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ABSTRACT

This lecture note is intended for use in the coud2611 Optimization and
Data Fittingat the Technical University of Denmark. It covers about 15% of
the curriculum. Hopefully, the note may be useful also to interested persons
not participating in that course.

The aim of the note is to give an introduction to algorithms for unconstrained
optimization. We present Conjugate Gradient, Damped Newton and Quasi
Newton methods together with the relevant theoretical background.

The reader is assumed to be familiar with algorithms for solving linear and
nonlinear system of equations, at a level corresponding to an introductory
course in numerical analysis.

The algorithms presented in the note appear in any good program library,
and implementations can be found via GAMS (Guide to Available Mathe-
matical Software) at the Internet address

http://gams.nist.gov

The examples in the note were computed inTMAB. The programs are
available in a toolboxmmoptibox , which can be downloaded from

http://www.imm.dtu.dk/~hbn/immoptibox.html
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1. INTRODUCTION

In this lecture note we shall discuss numerical methods for the solution of
the optimization problem. For a real function of several real variables we
want to find an argument vector which corresponds to a minimal function
value:

Definition 1.1. The optimization problem:

Findx* = argmin_f(x), wheref :R" —R.

The functionf is called theobjective functioror cost functiorandx* is the
minimizer.

In some cases we wannaaximizerof a function. This is easily determined
if we find a minimizer of the function with opposite sign.

Optimization plays an important role in many branches of science and appli-
cations: economics, operations research, network analysis, optimal design
of mechanical or electrical systems, to mention but a few.

Example 1.1. In this example we consider functions of one variable. The function
f(z) = (z — ")

has one, unique minimizet,", see Figure 1.1.

2

Figure 1.1y = (z — z*)°.
One minimizer.
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The function f(z) = —2cos(x — «™) has infinitely many minimizers:z =
x* + 2pw , wherep is an integer; see Figure 1.2.
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Figure 1.2:y = —2cos(z — z™). Many minimizers.

The function f(z) = 0.015(xz — 2*)?> — 2cos(x — =*) has a unique global
minimizer,z*. Besides that, it also has several socalteghl minimizersgach
giving the minimal function value inside a certain region, see Figure 1.3.

NANANA
NN A

X

Figure 1.3y = 0.015(z — z*)? — 2cos(z — z*).
One global minimizer and many local minimizers.
|

The ideal situation for optimization computations is that the objective func-
tion has a unique minimizer. We call this tgbal minimizer.

In some cases the objective function has several (or even infinitely many)
minimizers. In such problems it may be sufficient to find one of these mini-
mizers.

In many objective functions from applications we have a global minimizer
and several local minimizers. It is very difficult to develop methods which
can find the global minimizer with certainty in this situation. Methods for
global optimization are outside the scope of this lecture note.

The methods described here can find a local minimizer for the objective
function. When a local minimizer has been discovered, we do not know
whether it is a global minimizer or one of the local minimizers. We can-
not even be sure that our optimization method will find the local minimizer
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closest to the starting point. In order to explore several local minimizers
we can try several runs with different starting points, or better still examine
intermediate results produced by a global minimizer.

We end this section with an example meant to demonstrate that optimization
methods based on too primitive ideas may be dangerous.

Example 1.2. We want the global minimizer of the function
f(x) = (z14 22 —2)% +100(z1 — 22)> .
The idea (which we shouldot use) is the following:
“Make a series of iterations. In each iteration keep one of the variables fixed and
seek a value of the other variable so as to minimizeftvalue”. In Figure 1.4

we show thdevel curvesor contoursof f, ie curves consisting of positions with
the samef-value. We also show the first few iterations.

X2

Figure 1.4:The Method of
Alternating Variables fails to
determine the minimizer of a
guadratic

After some iterations the steps begin to decrease rapidly in size. They can be-
come so small that they do not influence thealues, because these are repre-
sented with finite precision in the computer, and the progress stops completely.
In many cases this happens far away from the solution. We say that the iteration
is caught inStiefel’s cage.

The “method” is called thenethod of alternating variablesnd it is a classical
example of a dangerous method, a method we must avoid. n

1.1. Conditions for a Local Minimizer 4

1.1. Conditions for a Local Minimizer

A local minimizer for f is an argument vector giving the smallest function
value inside a certain region, defineddy

Definition 1.2. Local minimizer.
x* is alocal minimizerfor f : R" — R if

f(x) < () for x* — x| <& (> 0).

Most objective functions, especially those with several local minimizers,
contain local maximizers and other points which satisfy a necessary condi-
tion for a local minimizer. The following theorems help us find such points
and distinguish the local minimizers from the irrelevant points.

We assume thaf has continuous partial derivatives of second order. The
first orderTaylor expansiorfor a function of several variables gives us an
approximation to the function value at a pokth neighbouringx,

fx+h) = f(x) +h'f'(x) + O(h|?), (1.3)

wheref’(x) is thegradientof f, a vector containing the first partial deriva-
tives,

of
8—501 (x)
f'(x) = : . (1.4)

8f.
0—1‘,1()()

We only consider vectorB with ||h|| so small that the last term in (1.3) is
negligible compared with the middle term.

If the pointx is a local minimizer it is not possible to find dnso that
f(x+h) < f(x) with ||h|| small enough. This together with (1.3) is the
basis of
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Theorem 1.5. Necessary condition for a local minimum.
If x* is a local minimizer forf : R" — R, then

f/(x*) = 0.

The local minimizers are among the points witt{x) = 0. They have a
special name.

Definition 1.6. Stationary point. If f/(xs) = 0, thenxs is said to be
astationary pointor f.

The stationary points are the local maximizers, the local minimizers and “the
rest”. To distinguish between them, we need one extra term in the Taylor
expansion. Provided thgthas continuous third derivatives, then

fx+h) = f(x) +h'f'(x) + sh" £ ()b + O(|h[?),  (1.7)

where theHessianf "’ (x) of the functionf is a matrix containing the second
partial derivatives of :

0% f
£ = ) 1.
) = |5 )] 1.9
Note that this is a symmetric matrix. For a stationary point (1.7) takes the
form

f(xs+h) = f(x,) + $h £ (xs)h + O(|[h®) . (1.9)

If the second term is positive for ah we say that the matrif” (xs) is
positive definitgcf Appendix A, which also gives tools for checking def-
initeness). Further, we can tak&|| so small that the remainder term is
negligible, and it follows thaks is a local minimizer.

Theorem 1.10. Sufficient condition for a local minimum.
Assume thaks is a stationary point and that' (xs) is positive definite.
Thenxs is a local minimizer.

The Taylor expansion (1.7) is also the basis of the proof of the following
corollary,

1.1. Conditions for a Local Minimizer 6

Corollary 1.11. Assume thaks is a stationary point and thét'(x) is
positive semidefinite whex is in a neighbourhood ofs. Thenxsis a
local minimizer.

The local maximizers and “the rest”, which we cs#lddle pointsgcan be
characterized by the following corollary, also derived from (1.7).

Corollary 1.12. Assume thatxgs is a stationary point and that
£ (xs) #0. Then

1) if £”(xg) is positive definite: see Theorem 1.10,

%

2) if £(xs) is positive semidefinitexs is a local minimizer or a saddle
point,

3) if £”(xs) is negative definitexs is a local maximizer,

4) if £”(xs) is negative semidefinitexs is a local maximizer or 4
saddle point,

5) if f”(xs) is neither definite nor semidefinitg; is a saddle point.

If £”(xs) =0, then we need higher order terms in the Taylor expansion in
order to find the local minimizers among the stationary points.

Example 1.3. We consider functions of two variables. Below we show the variation
of the function value near a local minimizer (Figure 1.5a), a local maximizer
(Figure 1.5b) and a saddle point (Figure 1.5c). It is a characteristic of a saddle
point that there exists one line through, with the property that if we follow
the variation of thef-value along the line, this “looks like” a local minimum,
whereas there exists another line through“indicating” a local maximizer.

c) saddle point

a) minimum b) maximum

Figure 1.5:With a2-dimensionalk we see surfaces
z = f(x) near a stationary point.
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If we study the level curves of our function, we see curves approximately like
concentric ellipses near a local maximizer or a local minimizer (Figure 1.6a),
whereas the saddle points exhibit the “hyperbolaes” shown in Figure 1.6b.

%
X
a) maximum or minimum b) saddle point
Figure 1.6:The contours of a function near a stationary point (]

Finally, the Taylor expansion (1.7) is also the basis for the following Theo-
rem.

Theorem 1.13. Second order necessary condition.
If x* is a local minimizer, thefi”’ (x*) is positive semidefinite.

2. DESCENTMETHODS

All the methods in this lecture note aiterative methodsThey produce a
series of vectors

X0, X1, X2, ... , (Zla)

which in most cases converges under certain mild conditions. We want the
series to converge towards’, a local minimizer for the given objective
functionf:R" — R, ie

x, — x° for k— oo, (2.1b)

wherex* is a local minimizer, see Definition 1.2).

In all (or almost all) the methods there are measures which enforce the de-
scending property

F(xpg1) < f(xx) - (2.2)

This prevents convergence to a maximizer and also makes it less probable
that we get convergence to a saddle point, see Chapter 1. We talk about the
global convergenceroperties of a method, ie convergence when the itera-
tion starts in a positioxy, which is not close to a local minimizer*. We

want our method to produce iterates that move steadily towards a neighbour-
hood ofx*. For instance, there are methods for which it is possible to prove
that any accumulation point (ie limit of a subseries)®f,} is a stationary

point (Definition 1.6), ie the gradients tend to zero:

f'(xx) =0 for k— oo. (2.3)
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This does not exclude convergence to a saddle point or even a maximizer,
but the descending property (2.2) prevents this in practice. In this “global
part” of the iteration we are satisfied if the current errors do not increase
except for the very first steps. Lettifg, } denote the errors,

e, = X — X",
the requirement is

llek+1l] < |lex]] for k> K.

In the final stages of the iteration where tkg are close tax* we expect
faster convergence. The local convergence results tell us how quickly we
can get a result which agrees with to a desired accuracy. Some methods
havelinear convergence:

lext+1]l < cillexll with 0 < ¢y <1 andxy, close tox™ .  (2.4)

It is more desirable to have higher order of convergence, for instance
quadratic convergencgonvergence of order 2):

lexs1]l < collex||*  with co >0 andx;, close tox* . (2.5)

Only a few of the methods used in the applications achieve quadratic final
convergence. On the other hand we want better than linear final conver-
gence. Many of the methods used in practice sagerlinear convergence:

lexta ]
lex|l

—0 fork — oco. (2.6)

This is better than linear convergence though (normally) not as good as
quadratic convergence.

Example 2.1. Consider 2 iterative methods, one with linear and one with quadratic
convergence. At a given step they have both achieved the result with an accuracy
of 3 decimals:

lex]| < 0.0005 .
They haver; = ¢3 = % in (2.4) and (2.5), respectively. If we want an accuracy

2.1. Structure of a Descent Method 10

of 12 decimals, the iteration with quadratic convergence will only need 2 more
steps, whereas the iteration with linear convergence will need about 30 more
steps,(%)30 ~ 1077, n

2.1. Fundamental Structure of a Descent Method

Example 2.2. This is a2-dimensional minimization example, illustrated on the
front page. A tourist has lost his way in a hilly country. It is a foggy day so he
cannot see far and he has no map. He knows that his rescue is at the bottom of a
nearby valley. As tools he has an altimeter, a compass and his sense of balance
together with a spirit level which can tell him about the slope of the ground
locally.

In order not to walk in circles he decides to use straight strides, ie with constant
compass bearing. From what his feet tell him about the slope locally he chooses
a direction and walks in that direction as long as his altimeter tells him that he
gets downhill. He stops when his altimeter indicates increasing altitude, or his
feet tell him that he is on an uphill slope.

Now he has to decide on a new direction and he starts his next stride. Let us hope
that he is saved in the end. (]

The pattern of events in the example above is the basis of the algorithms for
descent methods, see Algorithm 2.7 below.

The search directiohy must be a descent direction. Then we are able to
gain a smaller value of (x) by choosing an appropriate walking distance,
and thus we can satisfy the descending condition (2.2), see Section 2.2. In
Sections 2.5 — 2.6 we introduce different methods for choosing the appro-
priate step length, ie in Algorithm 2.7.

As stopping criterionwe would like to use the ideal criterion that the current
error is sufficiently small

llexl| <61

Another ideal condition would be that the current valuef¢k) is close
enough to the minimal value, ie



11 2. DESCENTMETHODS

Algorithm 2.7. Structure of descent methods

begin
k:=0; x:=xp; found:= false
repeat
hy := searchdirectionx)
if no suchh exists

{Starting poin}

{Fromx and downhill}

found:= true {x is stationary
else

Find “step length’a { see belowy

x:=x+ahy {new position}

k=k+1

found:= updatéfound
until foundor k>k,ax
end {... of descent algorithri

fxi) = fF(X7) <62
Both conditions reflect the convergeneg — x*. They cannot be used in
practice, however, becausé and f (x*) are not known. Instead we have to
use approximations to these conditions:

[Xkr1—xxl| <1 or f(xp)—f(Xks1) <e2. (2.8)

We must emphasize that even if (2.8) is fulfilled with smallandes, we
cannot be sure thdfe, || or f(xx)—f(x*) are small.

The other type of convergence mentioned at the start of this chapter is
f'(x)) — 0 for k—oo. This can be reflected in the stopping criterion

1 (xx)ll < e3, (2.9)

which is included in many implementations of descent methods.

There is a good way of using the property of converging function values.
The Taylor expansion (1.7) gf atx* is

2.2. Descent Directions 12

Foxi) = f(x*) + (xp=x*) T/ (x7) + 5 (=) £ (x) (xp—x") .
Now, if x* is a local minimizer, thefi’(x*) =0 andH* =" (x*) is posi-
tive semidefinite, see Chapter 1. This gives us

flxi) = f(x7) ~ 3 (xe—x*) T H" (x,—x")
so the stopping criterion could be
%(xk_klka)THk(kaka) <eg4 with xp ~x*. (2.10)

Here x,—x* is approximated by;,;—x; and H* is approximated by
Hk = f//(Xk).

2.2. Descent Directions

From the current position we wish to find a direction which brings us down-
hill, a descent direction. This means that if we take a small step in that
direction we get to a position with a smaller function value.

Example 2.3. Let us return to our tourist who is lost in the fog in a hilly country.
By experimenting with his compass he can find out that “half” the compass bear-
ings give strides that start uphill and that the “other half” gives strides that start
downhill. Between the two halves are two strides which start off going neither
uphill or downhill. These form the tangent to the level curve corresponding to
his position. n

The Taylor expansion (1.3) gives us a first order approximation to the func-
tion value in a neighbouring point toin directionh:
f(x+ah) = f(x) +ah'f'(x) + O(a?), with a >0.
If « is not too large, then the first two terms will dominate over the last:
f(x+ah) ~ f(x) +ah' f'(x) .

The sign of the ternavh" £/ (x) decides whether we start off uphill or down-
hill. In the space R we consider a hyperplarfé through the current posi-
tion and orthogonal te-f’(x),

H={x+h|h'f'(x)=0}.
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This hyperplane divides the space in an “uphill” half space and a “downhill”
half space. The half space we want has the veetti(x) pointing into it.
Figure 2.1 gives the situation in°R

—f/(x)

Figure 2.1: R
divided into a
“downhill” and an
“uphill” half space.

We now define a descent direction. This is a “downhill” direction, ie, it is
inside the “good” half space:

Definition 2.11. Descent direction.
h is a descent direction fromif h'f’(x) < 0.

A method based on successive descent directiondéseent method

In Figure 2.1 we have a descent directlarWe introduce the angle between
h and—f'(x),

~hTf(x)

EE———— 2.12
T e G (212)

0= /(h,—f'(x)) with cosf=

We state a condition on this angle,

Definition 2.13. Absolute descent method.
This is a method, where the search directibpssatisfy

T
0< - —
5 H

for all k&, with ;. > 0 independent ok.

2.3. Descent Methods with Line Search 14

The discussion above is concerned with the geometry®inaRd is easily
seen to be valid also in R If the dimensiom is larger than 3, we call the
“pseudo angldetweerh and—f’(x)”. In this way we can use (2.12) and
Definition 2.13 for alln > 2.

The restriction thaf: must be constant in all the steps is necessary for the
global convergence result which we give in the next section.

The following theorem will be used several times in the remainder of this
lecture note.

Theorem 2.14. If f/(x) # 0 andB is a symmetric, positive definite
matrix, then

h; = —Bf’(X) and h,; = —B_lf/(X)
are descent directions.

Proof. A positive definite matriXB € R™*" satisfies
u'Bu>0 forallueR", u#o0.
If we takeu = h; and exploit the symmetry dB, we get
hif'(x) = —f'(x)' B'f'(x) = —f'(x) ' Bf'(x) <0.
With u =h, we get
hif'(x) = hy (~Bhy) = —h}Bhy < 0.
Thus, the condition in Definition 2.11 is satisfied in both cases. O

2.3. Descent Methods with Line Search

After having determined a descent direction, it must be decided how long
the step in this direction should be. In this section we shall introduce the
idea ofline search We study the variation of the objective functigralong

the directionh from the current positior,

o(a) = f(x+ah), with fixedx andh .
From the Taylor expansion (1.7) it follows that
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p(a) = f(x) +ah'f'(x) + La’h £/ (x)h + O(a?)
and
¢'(0) =h"f'(x). (2.15)

In Figure 2.2 we show an example of the variationggfy) with h as a
descent direction. The descending condition (2.2) tells us that we have to
stop the line search with a valug so thaty(as) < ¢(0). According to
(2.15) havey’(0) < 0, but the figure shows that there is a risk thaty ifs
taken too large, thep(«) > (0). On the other hand, we must also guard
against the step being so short that our gain in function value diminishes.

y
y:(‘xo) /y:(KG)

o
Figure 2.2:Variation of the cost function along the search line.

To ensure that we get a useful decrease inftvalue, we stop the search
with a valueas which gives ap-value below that of the ling = A(«),
indicated in Figure 2.3 below. This line goes through the starting point and
has a slope which is a fraction of the slope of the starting tangent to the
(p-curve:

o(as) < Nas) , where
Ma) =¢(0)4+0-¢'(0)-a with 0<0<0.5.

The parametep is normally small, ed.001. Condition (2.16) is needed in
some convergence proofs.

(2.16)

We also want to ensure that thevalue is not chosen too small. In Figure 2.3
we indicate a requirement, ensuring that the local slope is greater than the

2.3. Descent Methods with Line Search 16

starting slope. More specific,

o'(as) > B¢ (0) withp<pg<1. (2.17)

y:(mo) /y:(ﬂa)

acceptable points «

Figure 2.3:Acceptable points according to
criteria (2.16) and (2.17).

Descent methods with line search governed by (2.16) and (2.17) are nor-
mally convergent. Fletcher (1987), pp 30-33, has the proof of the following
theorem.

[®)
T

Theorem 2.18. Consider an absolute descent method following Alg
rithm 2.7 with search directions that satisfy Definition 2.13 and with
line search controlled by (2.16) and (2.17).

If £/(x) exists and is uniformly continuous on the level &t f(x) <
f(x0)}, then fork — oc:

either f’(x;) = 0 for somek ,
or  f(xk) = —o0,

or f'(xx) — O.

A possible outcome is that the method finds a stationary paiptwith
f’(x;)=0) and then it stops. Another possibility is th#tx) is not
bounded from below fox in the level set{x | f(x)< f(x0)} and the
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method may “fall into the hole”. If neither of these occur, the method con-
verges towards a stationary point. The method being a descent method often
makes it converge towards a point which is not only a stationary point but
also a local minimizer.

A line search as described above is often callefé line searctbecause

of its liberal stopping criteria, (2.16) and (2.17). In contrast to this we talk
about‘exact line search”when we seek (an approximation to) a local min-
imizer in the direction given bia:

ae = argmin, o f(x+ah) forfixed x andh . (2.19)

A necessary condition ome is ¢’ (ae) = 0. We havey’(a) = h'f/(x+ah)
and this shows that eithdr’ (x+ach) =0, which is a perfect result (we
have found a stationary point fgh), or if f'(x+aeh) # 0, theny’(ae) =0
is equivalent to

f'(x+agh) L h. (2.20)

This shows that the exact line search will stop at a point where the local
gradient is orthogonal to the search direction.

Example 2.4. A “divine power” with a radar set follows the movements of our
wayward tourist. He has decided to continue in a given direction, until his feet or
his altimeter tells him that he starts to go uphill. The "divine power” can see that
he stops where the given direction is tangent to a local contour. This is equivalent
to the orthogonality mentioned in (2.20).

Figure 2.4:An exact line search
stops aty = x+aeh, where the
local gradient is orthogonal to
the search direction

2.4. Descent Methods with Trust Region 18

For further details about line searches, see Sections 2.5 — 2.6. In the next
two sections we describe methods where the step length is found without
the use of line search.

2.4. Descent Methods with Trust Region

The methods in this note produce series of steps leading from the starting
position to the final result, we hope. In the descent methods of this chap-
ter and in Newton’s method of Chapter 5, the directions of the steps are
determined by the properties ¢fx) at the current position. Similar con-
siderations lead us to the trust region methods, where the iteration steps are
determined from the properties of a model of the objective function inside a
given region. The size of the region is modified during the iteration.

The Taylor expansion (1.3) provides us with a linear approximatiofi to
near a giverx:
f(x+h) ~q(h) with g(h) = f(x) +h'f’(x). (2.21)
Likewise we can obtain a quadratic approximationftérom the Taylor
expansion (1.7)
f(x+h)~q(h)
with g(h) = f(x) + h'f’(x) + sh'f”(x)h .
In both case;(h) is a good approximation tg(x-+h) only if ||h] is suffi-
ciently small. These considerations lead us to determine the new iteration
step as the solution to the followingodel problem
hy = argmin,cp{q(h)}
whereD = {h | |h|| <A}, A>0.
The regiorD is called therust regionandg(h) is given by (2.21) or (2.22).

We useh = h;, as a candidate to our next step, and reledf f(x+h) >

f(x). The gain in cost function value controls the size of the trust region for
the next step: The gain is compared to the gain predicted by the approxima-
tion function, and we introduce ttgain factor.

_J(x) ~ f(x+h)
ORI

(2.22)

(2.23)

(2.24)
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Whenr is small our approximation agrees poorly with and when it is
large the agreement is good. Thus, we let the gain factor regulate the size
of the trust region for the next step (or the next attempt for this step when
r < 0 so thath is rejected).

These ideas are summarized in the following algorithm.

Algorithm 2.25. Descent method with trust region
begin
k:=0; x:=x9; A:=Ay; found:= false {starting poin}
repeat
k := k+1; hy := Solution of model problem (2.23)
r := gain factor (2.24)

if »>0.75 {very good step
A:=2xA {larger trust regioh

if »<0.25 {poor step
A:=A/3 {smaller trust regioh

if >0 {reject step if- < 0}
X : =X+ hy

Updatefound {stopping criteria, eg (2.8) and (2)9)

until  found or k>kpax
end

The numbers in the algorithm,75, 2, 0.25 and1/3 have been chosen from
practical experience. The method is not very sensitive to minor changes
in these values, but in the expressiais:= p;*A and A := A/ps the
numbersg; andp, must be chosen so that thevalues cannot oscillate.

There are versions of the trust region method wheke(:25” initiates an
interpolation betweer andx-+h based on known values gfandf’, and/or
“r>0.75" leads to an extrapolation along the directibpa line search ac-
tually. Actions like this can be rather costly, and Fletcher (1987, Chapter 5)
claims that the improvements in performance may be marginal. In the same
reference there are theorems about the global performance of methods like
Algorithm 2.25.
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2.5. Soft Line Search

Many researchers in optimization have proved their inventiveness by pro-
ducing new line search methods or modifications to known methods. What
we present here are useful combinations of ideas of different origin. The
description is based on Madsen (1984).

In the early days of optimization exact line search was dominant. Now, soft
line search is used more and more, and we rarely see new methods presented
which require exact line search.

An advantage of soft line search over exact line search is that it is the faster
of the two. If the first guess on the step length is a rough approximation
to the minimizer in the given direction, the line search will terminate im-
mediately if some mild criteria are satisfied. The result of exact line search
is normally a good approximation to the result, and this can make descent
methods with exact line search find the local minimizer in fewer iterations
than what is used by a descent method with soft line search. However, the
extra function evaluations spent in each line search often makes the descent
method with exact line search a loser.

If we are at the start of the iteration with a descent method, wkasdfar
from the solutionx™, it does not matter much that the result of the soft line
search is only a rough approximation to the result; this is another point in
favour of the soft line search.

The purpose of the algorithm is to fird,, an acceptable argument for the
function

p(a) = f(x + ah).
The acceptability is decided by the criteria (2.16),

o(as) < AMas) where

. (2.26a)
Ma) =¢(0)+0-¢'(0)-a with 0<p<0.5

and (2.17),

o'(as) > B¢ (0) withp< g <1. (2.26b)
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These two criteria express the demands thamust be sufficiently small

to give a useful decrease in the objective function, and sufficiently large
to ensure that we have left the starting tangent of the cyrve p(«a) for

a > 0, cf Figure 2.3.

The algorithm has two parts. First we find an interj¢alb] that contains
acceptable points, see figure 2.5.

y
y = ®0) /VZCP(O‘)

y =A(0)

Figure 2.5:Interval [a, b] con-
taining acceptable points. % %
a  acceptable points b

In the second part of the algorithm we successively reduce the interval: We
find a pointa in the strict interior offa, b]. If both conditions (2.26) are sat-
isfied by thisa-value, then we are finished{= «). Otherwise, the reduced
interval is eithela, b] := [a, o] or [a, b] := [a, b], where the choice is made

so that the reducefd, b] contains acceptable points.

We have the following remarks to Algorithm 2.27 given below.

1° If x is a stationary pointf((x) =0 = ¢’(0) =0) or h is not downhill,
then we do nothing.

2° The initial choiceb =1 is used because in many optimization methods
(eg Newton’s method in Chapter &)=1 is a very good guess in the
final steps of the iteration. The upper boumngd., must be supplied by
the user. It acts as a guard against an infinite loghisf unbounded.

3° We are to the left of a minimum and update the left hand end of the
interval[a, b].
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Algorithm 2.27. Soft line search

begin
if ¢'(0) = 0 {1°}
a:=0
else
k:=0; v:=0x*¢'(0);
a:=0; b:=min{l, dmas} {2°}
while (¢(b) < A(b)) and (¢'(b) < 7)
and (b < cumax) and (k < kmax)
k:=k+1;, a:=b {3°}
b := min{2b, max } {4°}
a:=b {5°}
while ((¢(a) > X)) or (¢'(a) < 7)) and (k < kmax)
k=k+1
Refinea and|a, 0] {6°}
if o(ar) > ¢(0) {7°}
a:=0

end

4° If amax is sufficiently large, then the series b¥values isl, 2,4, .. .,
corresponding to an “expansion factor” of 2. Other factors could be
used.

5° Initialization for second part of the algorithm.

6° See Algorithm 2.28 below.

7°  The algorithm may have stopped abnormally, eg by exceeding the per-
mitted numbelk,,... of function evaluations. If the current value of
does not decrease the objective function, then we retu#r), cf 1°.

The refinement can be made by the following Algorithm 2.28. The input
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is an intervalla, b] which we know contains acceptable points, and the out-
put is ana found by interpolation. We want to be sure that the intervals

have strictly decreasing widths, so we only accept the aefit is inside
la+d, b—d], whered = 15 (b — a). Thea splits[a, b] into two subintervals,

and we also return the subinterval which must contain acceptable points.

Algorithm 2.28. Refine
begin
Di=b-a; c:=(p(b) - ¢(a) - D ¢(a)/D? !
ifc>0
a:=a—¢'(a)/(2c)
o := min{max{e, a+0.1D}, b—0.1D}} {9°}
else
a:=(a+b)/2
if p(a) < A(a) {10°}
a:=«
else
b:=a
end

We have the following remarks to Algorithm 2.28:
8° The second order polynomial

U(t) = p(a) +¢'(a) - (t-a) + - (t—a)®

satisfies)(a) = ¢(a), ¥'(a) = ¢’(a) andy(b) = (b). If ¢> 0, theny
has a minimum, and we let be the minimizer. Otherwise we take
as the midpoint ofa, b].

9° Ensure thaty is in the middleS0% of the interval.

10° If ¢(«) is sufficiently small, then the right hand part [of b] contain
points that satisfy both of the constraints (2.26). Otherwiseb] is
sure to contain acceptable points.
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Finally, we give the following remarks about the implementation of the al-
gorithm.

The function and slope values are computed as
¢(a) = f(x+ah), ¢'(a) = h'f'(x+ah) .

The computation off andf’ is the “expensive” part of the line search.
Therefore, the function and slope values should be stored in auxiliary vari-
ables for use in acceptance criteria and elsewhere, and the implementation
should return the value of the objective function and its gradient to the call-
ing programme, a descent method. They will be useful as starting function
value and for the starting slope in the next line search (the next iteration).

2.6. Exact Line Search

The older methods for line search produce a valuesathich is sufficiently
close to the true resultys ~ ae With

e = argmin, ., ¢(a) .
The algorithm can be similar to the soft line search in Algorithm 2.27, except
that the refinement loop after remdikis changed to

while (|<p’(oc)| > T % |<p’(0)|)
and (b—a > ¢) and (k < kmax) (2.29)

Here,s and 7 indicate the level of errors tolerated; both should be small,
positive numbers.

An advantage of an exact line search is that (in theory at least) it can produce
its results exactly, and this is needed in some theoretical convergence results
concerning conjugate gradient methods, see Chapter 4.

The disadvantages are numerous; see the start of Section 2.5.
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Until now we have not answered an important question connected with Al-
gorithm 2.7: Which of the possible descent directions (see Definition 2.11)
do we choose as search direction?

Our first considerations will be based purely on local first order information.
Which descent direction gives us the greatest gain in function value relative
to the step length? Using the first order Taylor expansion (1.3) we get the
following approximation

fx) = fx+ah)  hTf'(x)

~ = |If'(x)||cos® . (3.2)
al] -

In the last relation we have used the definition (2.12). We see that the relative
gain is greatest when the andle= 0, ie whenh = hgq, given by

heg = —f/(x) . (3.2)

This search direction, the negative gradient direction, is called the direction
of steepest descerit. gives us a useful gain in function value if the step is
so short that thé™ term in the Taylor expansiofO(||h[?)) is insignifi-

cant. Thus we have to stop well before we reach the minimizer along the
directionhgy. At the minimizer the higher order terms are large enough to
have changed the slope from its negative starting value to zero.

According to Theorem 2.18 a descent method based on steepest descent and

soft or exact line search is convergent. If we make a method usingnd
a version of line search that ensures sulfficiently short steps, then the global
convergence will manifest itself as a very robust global performance. The
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disadvantage is that the method will have linear final convergence and this
will often be exceedingly slow. If we use exact line search together with
steepest descent, we invite trouble.

Example 3.1. We test a steepest descent method with exact line search on the
function from Example 1.2,

F(x) = (21 + 22— 2)* + 100(21 — 22)° .
Figure 3.1 gives contours of this function.

hy
X X0

Figure 3.1:The Steepest Descent
Method fails to find the
minimizer of a quadratic

The gradient is

[ 2(x1 + 22 — 2) +200(z1 — x2)

f'(x) = | 2z + @2 — 2) — 200(21 — x2)

I the starting point is taken asy = [3,598/202]", then the first search direc-
tion is
[ 3200/202
0

This is parallel to ther;-axis. The exact line search will stop at a point where
the gradient is orthogonal to this. Thus the next search direction will be parallel
to thexs-axis, etc. The iteration steps will be exactly as in Example 1.2. The
iteration will stop far away from the solution because the steps become negligi-
ble compared with the position, when represented in the computer with a finite
number of digits. (]

hsd: -
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This example shows how the final linear convergence of the steepest descent
method can become so slow that it makes the method completely useless
when we are near the solution. We say that the iteration is cautiefel’s

cage.

The method is useful, however, when we are far from the solution. It per-
forms a little better if we ensure that the steps taken are small enough. In
such a version it is included in several modern hybrid methods, where there
is a switch between two methods, one with robust global performance and
one with superlinear (or even quadratic) final convergence. Under these
circumstances the method of steepest descent does a very good job as the
“global part” of the hybrid. See Section 5.2.

4. CONJUGATEGRADIENT METHODS

Starting with this chapter we begin to describe methods of practical impor-
tance. The conjugate gradient methods are simple and easy to implement,
and generally they are superior to the steepest descent method, but New-
ton’s method and its relatives (see the next chapter) are usually even better.
If, however, the numben of variables is large, then the conjugate gradient
methods may outperform Newton-type methods. The reason is that the lat-
ter rely on matrix operations, whereas conjugate gradient methods only use
vectors. Ignoring sparsity, Newton’s method neéds?) operations per it-
eration step, Quasi-Newton methods né€ka?), but the conjugate gradient
methods only us€®(n) operations per iteration step. Similarly for storage:
Newton-type methods require arxn matrix to be stored, while conjugate
gradient methods only need a few vectors.

The basis for the methods presented in this chapter is the following defini-
tion, and the relevance for our problems is indicated in Example 4.1.

Definition 4.1. Conjugate directions.A set of directions correspond-
ing to vectors{hy, hy,...} is said to beconjugatewith respect to a
symmetric positive definite matriA,, if

h]Ah; =0 forall i+#j.

Example 4.1. In R? we want to find the minimizer of a quadratic
q(x) =a+ b x4+ %XTHX ,
where the matrixH is assumed to be positive definite. Figure 4.1 gives the
contours of such a polynomial.
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Figure 4.1:In the 2-dimensional
case, the second conjugate gradient
step determines the minimizer of
a quadratic.

Remember how Examples 1.2 and 3.1 showed that the methods of alternating
directions and of steepest descent could be caught in Stiefel's cage and fail to
find the solutionx™*.

Assume that our first step was in the directin, a descent direction. Now
we have reached positicnafter an exact line search. Thus the directtonis
tangent to the contour a. This means thah; is orthogonal to the steepest
descent directiotsg atx, iehl hsg =0

hi ((—q'(x)) =h; (-b - Hx) = 0.
Now, the minimizer satisfiebIx* + b = 0, and insertingo from this we get
hiH(x* —x) =0 .
This shows that if we are atafter an exact line search along a descent direction,
h,, then the directionx*—x to the minimizer is conjugate th; with respect
to H. We can further prove that the conjugate direction is a linear combination

of the search directioh; and the steepest descent directihgy, with positive
coeficients, ie, it is in the angle betwekn andhsg. [

In the next sections we discuss conjugate gradient methods which can find
the minimizer of a second degree polynomialrirsteps, where: is the
dimension of the space.

4.1. Quadratic Models

An important tool for designing optimization methodsgsadratic mod-
elling. The functionf is approximated locally with a quadratic functign
of the form
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¢(x) =a+b'x+ ix"Hx, 4.2)

whereH is a symmetric matrix which is usually required to be positive
definite.

When the modelling is direct, we simply use the minimizer &6 approx-
imatex* and then repeat the process with a new approximation. This is the
basis of the Newton-type methods described in Chapter 5. For the conjugate
gradient methods, the model function (4.2) will be employed indirectly.

A related concept is that @fuadratic terminationwhich is said to hold for
methods that find the exact minimum of the quadratic (4.2) in a finite number
of steps. The steepest descent method does not have quadratic termination,
but all the methods discussed in this chapter and the next do. Quadratic
termination has proved to be an important idea and worth striving for in the
design of optimization methods.

Because of the importance of quadratic models we now take a closer look at
the quadratic function (4.2). It is not difficult to see that its gradient it
given by

d(x)=Hx+b (4.3)
and for allx the Hessian is

qd'(x)=H. (4.4)
If H is positive definite, thep has a unique minimizex* = —H ™ 'b. If

n=2, then the contours of are ellipses centered at. The shape and ori-
entation of the ellipses are determined by the eigenvalues and eigenvectors
of H. Forn=3 this generalizes to ellipsoids, and in higher dimensions we
get (n—1)-dimensional hyper-ellipsoids. It is of course possible to define
quadratic functions with a non-positive definite Hessian, but then there is no
longer a unique minimizer.

Finally, a useful fact is derived in a simple way from (4.3): Multiplication
by H maps differences is-values to differences in the corresponding gra-
dients:

H(x—7) = q'(x) - d/(2). (4.5)
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4.2. Structure of a Conjugate Gradient Method

Let us have another look at Figure 3.1 where the slow convergence of the
steepest descent method is demonstrated. An idea for a possible cure is to
take a linear combination of the previous search direction and the current
steepest descent direction to get a direction toward the solution. This gives
a method of the following type.

Algorithm 4.6. Conjugate gradient method.
begin
X :=Xp; k:=0; found:=falseg v:=0; heg:=0 {1°}
repeat
hprev = hcg§ hcg = _fl(X) + ok hprev
if £/(x) heg >0 {2°}
heg := —f'(x)
o := line_searclix, heg); x := x + ahgg {3°}
yo= {4°}
k:= k+1; found:=--- {5°}
until found or k& > kpax
end

We have the following remarks:
1° Initialization.

2°  In most cases the vecthgg is downhill. This is not guaranteed, eg
if we use a soft line search, so we use this modification to ensure
that each step is downhill.

3° New iterate.

4° The formula fory is characteristic for the method. This is discussed
in the next sections.

5°  We recommend to stop if one of the criteria
If'(x)lloc < e1quador [aheg|lz < ea(e2 + [[x]|2) 4.7)

is satisfied, cf (2.8) and (2.9).
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In the next theorem we show that a method employing conjugate search
directions and exact line searches is very good for minimizing quadratics.
In Theorem 4.12 (in Section 4.3) we show thatfiis quadratic and the

line searches are exact, then a proper choice gives conjugate search
directions.

Theorem 4.8. Use Algorithm 4.6 with exact line search on a quadrallic
like (4.2) withx € R", and with the iteration stepd,;, = x; — x; 1
corresponding to conjugate directions. Then

1° The search directionis.g are downhill.
2° The local gradienf’(xy) is orthogonal tch;, hs, . .., hy.
3° The algorithm terminates after at mossteps.

Proof. We examine the inner product in Definition 2.11 and insert the
expression fohgg

f/(X)Thcg = _f/(X)Tf/(X) + ’Yf/(X)Thprev
= —f'x®)IE<0.
The second term in the first line is zero for any choiceyddince an
exact line search terminates when the local gradient is orthogonal to the

search direction. Thudy.g is downhill (unlessx is a stationary point,
wheref’(x) = 0), and we have provetf.

(4.9)

Next, the exact line searches guarantee that
hi f'(x;)=0, i=1,...,k (4.10)
and by means of (4.5) we see that jo« &,
hjf/(xz) = hj (f/(x;) + f/(xx) — £/(x;))
=0+ h—]'»—H(xk - X;)
=hjH(hy+...+hj1) =0 .

Here, we have exploited that the directiofis;} are conjugate with
respect tdH, and we have prove?f.
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Finally, H is non-singular, and it is easy to show that this implies
that a set of conjugate vectors is linearly independent. Therefore
{hy,...,h,} span the entire R andf’(x,,) must be zero. O

We remark that iff’(x;) =0 for somek <n, then the solution has been
found and Algorithm 4.6 stops.

What remains is to find a clever way to determine The approach used

is to determiney in such a way that the resulting method will work well
for minimizing quadratic functions. Taylor's formula shows that smooth
functions are locally well approximated by quadratics, and therefore the
method can be expected also to work well on more general functions.

4.3. The Fletcher—Reeves Method
The following formula fory was the first one to be suggested:
_ )T (x)
£/ (xprev) £ (Xprev)

wherexprey is the previous iterate. Algorithm 4.6 with this choice fpis
called theFletcher—Reeves Methadter the people who invented it in 1964.

(4.11)

Theorem 4.12. Apply the Fletcher—-Reeves method with exact line
search to the quadratic function (4.2). fif(x;) #0 for k=1,...,n,
then the search directiohs, . . . , h,, are conjugate with respect k.

Proof. See Appendix B. O

According to Theorem 4.8 this implies that the Fletcher—Reeves method
with exact line search used on a quadratic will terminate in at maseps.

Point1° in Theorem 4.8 shows that a conjugate gradient method with exact

line search produces descent directions. Al-Baali (1985) proves that this is
also the case for the Fletcher—Reeves method with soft line search satisfying
certain mild conditions. We return to this result in Theorem 4.14 below.

4.4, Polak—Rikkre Method 34

4.4. The Polak—Ribere Method
An alternative formula fory is

_ (') - f (xpre) £/(x)
£/ (xprev) " £/ (Xprev) 7

Algorithm 4.6 with this choice ofy is called thePolak—Ribére Method It
dates from 1971 (and again it is named after the inventors).

For a quadratic (4.13) is equivalent to (4.11) (because fheq)re\,)Tf’(x)

= 0, see (B.6) in Appendix B). For general functions, however, the two
methods differ, and through the years experience has shown (4.13) to be
superior to (4.11). Of course the search directions are still downhill if ex-
act line search is used in the Polak—Ritei Method. For soft line search
there is however no result parallel to that of Al-Baali for the Fleetcher—
Reeves Method. In fact M.J.D. Powell has constructed an example where
the method fails to converge even with exact line search (see p 213 in No-
cedal (1992)). The success of the Polak—Ribiformula is therefore not so
easily explained by theory.

(4.13)

Example 4.2. (Resetting).A possibility that has been proposed, is to reset the
search directioth to the steepest descent directla in everyn'" iteration. The
rationale behind this is the-step quadratic termination property. If we enter a
neighbourhood of the solution whefebehaves like a quadratic, resetting will
ensure quick convergence. Another apparent advantage of resetting is that it will
guarantee global convergence (by Theorem 2.18). However, practical experience
has shown that the profit of resetting is doubtful.

In connection with this we remark that the Polak—Rilei method has a kind of
resetting built in. Should we encounter a step with very little progress, so that
|lIx—Xprev|| is small compared with{f ' (xprev) ||, then||f’(x) — £’ (xprev)|| Will

also be small and thereforeis small, andhcy ~ hsqin this situation. Also, the
modification before the line search in Algorithm 4.6 may result in an occasional
resetting. [
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4.5. Convergence Properties

In Theorem 4.8 we saw that the search directibggof a conjugate gradi-
ent method are descent directions and thugtbg(2.12) satisfieg < /2.
There is no guarantee, however, that thef Definition 2.13 will stay con-
stant, and Theorem 2.18 is therefore not directly applicable.

For many years it was believed that to guarantee convergence of a conjugate
gradient method it would be necessary to use a complicated ad hoc line
search, and perhaps make some other changes to the method. But in 1985
Al-Baali managed to prove global convergence using a traditional soft line
search.

Theorem 4.14. Let the line search used in Algorithm 4.6 satisfy (2.16)
and (2.17) with parameter values< 5 < 0.5. Then there is &> 0
such that for allk

f'(x) heg < —c|[f'(x)[3 and

klim £/ (x)]]2 = 0.

Proof. See Al-Baali (1985). O

Let us finally remark on the rate of convergence. Crowder and Wolfe (1972)
show that conjugate gradient methods with exact line search have a linear
convergence rate, as defined in (2.4). This should be contrasted with the
superlinear convergence rate that holds for Quasi-Newton methods and the
guadratic convergence rate that Newton’s method possesses.

Example 4.3. Rosenbrock’s functign
F(x) = 100(z2 —21)* + (1—21)%,
is widely used for testing optimization algorithms. Figure 4.2 shows level curves

for this function (and illustrates, why it is sometimes called ‘thenana func-
tion”).

4.5.
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5.

Figure 4.2:Contours of Rosenbrock’s function.

The function has one minimizer* = [1, 1]" (marked by at in the figure) with
f(x*)=0, and there is a “valley” with sloping bottom following the parabola
xzs = x3. Most optimization algorithms will try to follow this valley. Thus,
a considerable amount of iteration steps is needed, if we %akm the 2nd
guadrant.

Below we give the number of iteration steps and evaluationg®j andf’(x)
when applying Algorithm 4.6 on this function. In all cases we use the starting
pointxo = [—1.2, 1]", and stopping criteria given by = 1075, e, = 10712

in (4.7). In case of exact line search we use= 107°%, ¢ = 107% in (2.29),
while we take3 = 107, o = 10~2 in Algorithm 2.27 for soft line search.

Method Line search| # it. steps| # fct. evals
Fletcher—Reeves exact 118 1429
Fletcher—Reeves soft 249 628

Polak—Ribére exact 24 266
Polak—Ribére soft 45 130

Thus, in this case the Polak—Rébeé method with soft line search performs
best. Below we give the iterates (cf. Figure 4.2) and the value&(®f) and
|If’ (xx)||s; NOte the logarithmic ordinate axis.
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Figure 4.3:Polak—Ribére method with soft line search
applied to Rosenbrock’s function.
Top: iteratesx,.  Bottom: f(xx) and ||f’(xx)||cc- L]

4.6. Implementation

To implement a conjugate gradient algorithm in a computer program, some
decisions must be made. Of course we need to choose a formujavier
recommend the Polak—Rdgie formula.

We also need to specify the exactness of the line search. For Newton-type
methods it is usually recommended that the line search be quite liberal, so
for the line search in Algorithm 2.27 it is common to choose the parame-
ter valuesp = 0.01 and = 0.9. For conjugate gradient methods experience
dictates that a line search with stricter tolerances be used;-sdy01 and

£ =0.1. In addition we have to specify the stopping criterion; (2.9) is rec-
ommended. Since we do not have accesstx;, ), we cannot use (2.10).

For methods with a fast convergence rate, (2.8) may be quite satisfactory, but
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its use for conjugate gradient methods must be discouraged because their fi-
nal convergence rate is only linear.

Finally some remarks on the storage of vectors. The Fletcher—Reeves
method may be implemented using thregectors of storages, g andh.

If these contairx, f’(x) andhye, at the beginning of the current iteration
step, we may overwrith with heq and during the line search we overwrite

X with x+ahcg andg with f’(x+ahcg). Before overwriting the gradient,

we find f’(x)Tf’(x) for use in the denominator in (4.11) on the next iter-
ation. For the Polak—Ribre method we need accesftgx) andf’(xprev)
simultaneously, and thus four vectors are required xsay gnew andh.

4.7. The CG Method for Linear Systems

We cannot part with conjugate gradient methods without mentioning that
they can of course be used to minimize the quadratic function (4.2) itself.
But by (4.3) this is equivalent to solving the positive definite linear system

Hx=-b.
Let g denote the current gradient,
g = q(x) = Hx+b,
and letu = Hhg,. It is easily verified that the exact step lengtmay be
calculated directly,
_—u's
u'hgg
and thatx andg are updated by
x:=X+oahyg g:=g+aou.
The Fletcher—Reeves and the Polak—&ibiformulas are equivalent in this
setting,
g'g
g-grevgprev .
Thus, the method can be implemented using fowectors x, g, h, u.

’7:
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The method is called theonjugate gradient method for linear systerike
method is specially useful when the matiik is large and sparse. Since
the conjugate gradient method only needs matrix-vector multiplications it
can then be much cheaper than a direct method like Gaussian elimination or
solution via the Cholesky factorization.

Within the field of numerical linear algebra the study of CG methods for
linear systems is a whole subject in itself. See eg Chapter 10 in Golub and
Van Loan (1996) or the monograph by van der Vorst (2003).

4.8. Other Methods and Further Reading

Over the years numerous other conjugate gradient formulae and amend-
ments to the Fletcher—Reeves and Polak-&®éimethod have been pro-
posed. We only give a short summary here, and refer the interested reader
to the book by Fletcher (1987) and the paper by Nocedal (1992) for details
and further information.

A possible amendment to the Polak—RitE@ method is to choose =
max(yPR 0), wherey R is the of (4.13). With this choice of; it is possi-

ble to guarantee global convergence with inexact line search. See p 213 in
Nocedal (1992) for further discussion and references.

The conjugate gradient methods belong to a class of methods sometimes
referred to as conjugate direction methods. Other examples of these may be
found in Fletcher (1987).

Finally we want to mention two classes of methods that have received much
attention in recent years. The first class is called limited memory Quasi-
Newton methods, and the second class is truncated Newton methods or in-
exact Newton methods. These are not conjugate direction methods, but they
are also aimed at solving large problems. See pages 233-234 in Nocedal
(1992) for some discussion and further references.

5. NEWTON-TYPE METHODS

In this chapter we consider a class of methods for unconstrained optimiza-
tion which are based on Newton’s method. This class is called Quasi-
Newton methods. In order to explain these methods we first describe New-
ton’s method for unconstrained optimization in detail. Newton’s method
leads to another kind of methods known as Damped Newton Methods,
which will also be presented.

Finally we get to the Quasi-Newton methods. This class includes some of
the best methods on the market for solving the unconstrained optimization
problem.

5.1. Newton’s Method

Newton’s method forms the basis of all Quasi-Newton methods. It is widely
used for solving systems of non-linear equations, and until recently it was
also widely used for solving unconstrained optimization problems. As it
will appear, the two problems are closely related.

Example 5.1. In Example 1.2 we saw the method of alternating directions fail to
find the minimizer of a simple quadratic in two dimensions and in Example 3.1
we saw the steepest descent method fail on the same quadratic. In Chapter 4 we
saw that the conjugate gradient methods finds the minimizer of a quadratic in
steps { being the dimension of the space), in two steps in Example 4.1.

Newton’s method can find the minimizer of a quadratia:idimensional space
in one step. This follows from equation (5.2) below.

Figure 5.1 gives the contours of our 2-dimensional quadratic together with (an
arbitrary)xo. x; and the minimizex™*, marked byx.
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X2

Figure 5.1:Newton’s method finds
the minimizer of a quadratic in
the very first step

X1 .
In order to deriveNewton’s methodh the version used in optimization, we
shall once again consider the truncated Taylor expansion of the cost function
at the current iterate,

f(x+h) ~ ¢gh), (5.1a)
whereq(h) is the quadratic model gf in the vicinity ofx,
g(h) = f(x)+h'f'(x) + Lh' f"(x)h. (5.1b)

The idea now is to minimize the modelat the current iterate. If”(x) is
positive definite, theg has a unique minimizer at a point where the gradient
of ¢ equals zero, ie where

f'(x)+f"(x)h = 0. (5.2)

Hence, in Newton’s method the new iteration step is obtained as the solution
to the system (5.2) as shown in the following algorithm.

Algorithm 5.3. Newton’s method
begin
X 1= Xp; {Initialisation}
repeat
Solve f”(x)h, = —f'(x) {find steg
x:=x+hp {... and next iterate
until stopping criteria satisfied
end
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Newton’s method is well defined as long #%(x) remains non-singular.
Also, if the Hessian is positive definite, then it follows from Theorem 2.14
thath,, is downhill. Further, iff’(x) stays positive definite in all the steps
and if the starting point is sufficiently close to a minimizer, then the method
usually converges rapidly towards such a solution. More precisely the fol-
lowing theorem holds.

Theorem 5.4. If an iteratex is sufficiently close to a local mini-
mizerx* andf”(x*) is positive definite, then Newton’s method is well
defined in all the following steps, and it converges quadratically to-
wardsx*.

Proof. See eg Section 3.1 in Fletcher (1987). O

Example 5.2. We shall use Newton’s method to find the minimizer of the following
function

f(x)=05%x? * (/6 4+ 1)

: (55)
+x2 * Arctan(zz) — 0.5 x In (3 + 1) .

We need the derivatives of first and second order for this function:
3 2
’ o 151/3 + 1 1z o i +1 0
Fix) = { Arctan(z2) ] o = { 0 1/(1+22)

We can see in Figure 5.2 that in a region around the minimizer the function looks
very well-behaved and extremely simple to minimize.

X2
25 .
Figure 5.2:Contours of the
function (5.5). The level AT
curves are symmetric : RS
across both axes. _9(')55'; S boa
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Table 5.1 gives results of the iterations with the starting pgfnt= [1, 0.7].
According to Theorem 5.4 we expect quadratic convergence. If the fagtor

in (2.5) is of the order of magnitude 1, then the colummpfwould show the
number of correct digits doubled in each iteration step, andgf th@ues and step
lengths would be squared in each iteration step. The convergence is faster than
this; actually for any starting point) = [u, v] with [v| < 1 we will get cubic
convergencesee the end of the next example.

T /

k X}, f £l [[h |l
0 [ [1.0000000000, 0.7000000000] §11e01 | 1.47e+00

1 | [0.3333333333, -0.2099816869] 7.85¢-02 | 4.03e-01 | 1.13e+00
2 | [0.0222222222, 0.0061189580] 2.66e-04 | 2.31e-02 | 3.79e-01
3 | [0.0000073123, -0.0000001527] 267e-11 | 7.31e-06 | 2.30e-02
4 | [0.0000000000, 0.0000000000] 3.40e-32 | 2.61e-16 | 7.31e-06
5 | [0.0000000000, 0.0000000000] 0.00e+00 | 0.00e+00 | 2.61e-16

Table 5.1:Newton’s method on (5.5%) = [1, 0.7]. "

Until now, everything said about Newton’s method is very promising: It

is simple and if the conditions of Theorem 5.4 are satisfied, then the rate
of convergence is excellent. Nevertheless, due to a series of drawbacks the
basic version of the method is not suitable for a general purpose optimization
algorithm.

The first and by far the most severe drawback is the method’s lack of global
convergence.

Example 5.3. With the starting poink{, = [1, 2] the Newton method behaves very
badly:

k Xk f I1£7]] [
0 | [1.0000000000, 2.0000000000] 1.99e+00 1.73e+00

1 | [0.3333333333, -3.5357435890] 3.33e+00 1.34e+00 5.58e+00
2 | [0.0222222222, 13.9509590869] 1.83e+01 1.50e+00 1.75e+01
3 | [0.0000073123, -2.793441e+02] 4.32e+02 1.57e+00 2.93e+02
4 | [0.0000000000, 1.220170e+05] 1.92e+05 1.57e+00 1.22e+05
5 | [0.0000000000, -2.338600e+10] 3.67e+10 1.57e+00 2.34e+10

Table 5.2:Newton’s method on (5.5%) = [1, 2].
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Clearly, the sequence of iterates moves rapidly away from the solution (the first
component converges, but the second increases in size with alternating sign) even
thoughf ”(x) is positive definite for ank € R

The reader is encouraged to investigate what happens in detail. Hint: The Taylor
expansion for Arctaf0+h) is

h—1h® 4 1p> — Lp7 4 ... for |h| <1

1 1 1

Arctan(0+h) =
i ) Sigr(h)(%—E—F%—%-{—"') for |h| > 1.
]

The next point to discuss is th&f (x) may not be positive definite when

is far from the solution. In this case the sequence may be heading towards a
saddle point or a maximizer since the iteration is identical to the one used for
solving the non-linear system of equatidii$x) = 0. Any stationary point

of f is a solution to this system. Alsé;’(x) may be ill-conditioned or sin-
gular so that the linear system (5.2) cannot be solved without considerable
errors inh,. Such ill-conditioning may be detected by a well designed ma-
trix factorization (eg a Cholesky factorization as described in Appendix A),
but it still leaves the question of what to do in case ill-conditioning occurs.

The final major drawback is of a more practical nature but basically just as
severe as the ones already discussed. Algorithm 5.3 requires the analytic
second order derivatives. These may be difficult to determine even though
they are known to exist. Further, in case they can be obtained, users tend
to make erroneous implementations of the derivatives (and later blame a
consequential malfunction on the optimization algorithm). Also, in large
scale problems the calculation of the Hessian may be costly $imoe+1)
function evaluations are needed.

Below, we summarize the advantages and disadvantages of Newton’s
method discussed above. They are the key to the development of more use-
ful algorithms, since they point out properties to be retained and areas where
improvements and modifications are required.
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Advantages and disadvantages of Newton’'s method for uncon

strained optimization problems

Advantages

1° Quadratically convergent from a good starting poinf ff(x*) is
positive definite.

2° Simple and easy to implement.

Disadvantages

1° Not globally convergent for many problems.

2° May converge towards a maximum or saddle poinf of

3° The system of linear equations to be solved in each iteration may
be ill-conditioned or singular.
4° Requires analytic second order derivativeg of

Table 5.3:Pros and Cons of Newton’s Method.

5.2. Damped Newton Methods

Although disadvantag¢® in Table 5.3 often makes it impossible to use any

of the modified versions of Newton’s method, we shall still discuss them,
because some important ideas have been introduced when they were de-
veloped. Further, in case second order derivatives are obtainable, modi-
fied Newton methods may be used successfully. Hence, for the methods
discussed in this subsection it is still assumed, that second order analytic
derivatives off are available.

The more efficient modified Newton methods are constructed as either ex-
plicit or implicit hybrids between the original Newton method and the
method of steepest descent. The idea is that the algorithm in some way
should take advantage of the safe, global convergence properties of the
steepest descent method whenever Newton’s method gets into trouble. On
the other hand the quadratic convergence of Newton's method should be ob-
tained when the iterates get close enougk*toprovided that the Hessian is
positive definite.
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The first modification that comes to mind is a Newton method with line
search in which the Newton stép = —[f”(x)]”'£’(x) is used as a search
direction. Such a method is obtained if the step= x+h,, in Algorithm 5.3

is substituted by

a := line_searclix, hy); x :=x+ ahy. (5.6)

This will work fine as long a$ " (x) is positive definite since in this cakg
is a descent direction, cf Theorem 2.14.

The main difficulty thus arises whefit’(x) is not positive definite. The
Newton step can still be computedfif’(x) is non-singular, and one may
search alongth, where the sign is chosen in each iteration to ensure a
descent direction. However, this rather primitive approach is questionable
since the quadratic mode(h) will not even possess a unique minimum.

A number of methods have been proposed to overcome this problem. We
shall concentrate on the so-called damped Newton methods, which are con-
sidered to be the most successful in general. The framework for this class
of methods is

Algorithm 5.7. Damped Newton step
solve (f”(x) + uI) hgn = —f'(x) (n>0)
X := X + ahgn (>0)
adjust

Instead of finding the step as a stationary point of the quadratic (5.1b), the
stephygy is found as a stationary point of

¢u(h) = q(h) + uh"h

5.8
= f(x)+h'f’(x) + ih" (f"(x) + pI)h. (>8)
(T is the identity matrix). In Appendix C we prove that
If 1 is sufficiently large, then the matrix
M y larg (5.9)

£”(x) + pI is positive definite.
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Thus, if i is sufficiently large, therhg, is not only a stationary point, but
also a minimizer forg,. Further, Theorem 2.14 guarantees tha{ is a
descent direction fof atx.

From the first formulation in (5.8) we see that the tefph’ h penalizes
large steps, an from the definition in Algorithm 5.7 we see thatig very
large, then we get

1
hgn ~ —— f'(x), (5.10)
w

ie a short step in the steepest descent direction. As discussed earlier, this is
useful in the early stages of the iteration process, if the cugrénfar from

the minimizerx*. On the other hand, ji is small, therhgy, ~ h;, the New-

ton step, which is good when we are closexto(wheref " (x) is positive
definite). Thus, by proper adjustment of the damping parametes have

a method that combines the good qualities of the steepest descent method in
the global part of the iteration process with the fast ultimate convergence of
Newton’s method.

There are several variants of damped Newton methods, differing in the way
that i is updated during iteration. The most successful seem to be of the
Levenberg—Marquardt type, which we describe later. First, however, we
shall mention that the parameterin Algorithm 5.7 can be found by line
search, and information gathered during this may be used to update

It is also possible to use a trust region approach (cf Section 2.4); see eg
Fletcher (1987) or Nocedal and Wright (1999). An interesting relation be-
tween a trust region approach and Algorithm 5.7 is given in the following
theorem, which was first given by Marquardt (1963).

Theorem 5.11. If the matrixf”(x)+ I is positive definite, then

han = argmin, < n,, {a(h)},
wheregq is given by (5.1b) andhg, is defined in Algorithm 5.7.

Proof. See Appendix D. O
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In a proper trust region method we monitor the trust region radiuhe
theorem shows that if we monitor the damping parameter instead, we can
think of it as a trust region method with the trust region radius given implic-
ity as A = ||hgn||-

In Levenberg—Marquardtype methods: is updated in each iteration step.
Given the present value of the parameter, the Cholesky factorization of
f”(x)+uIis employed to check for positive definiteness, anslincreased

if the matrix is not significantly positive definite. Otherwise, the solutign

is easily obtained via the factorization.

The direction given byhy, is sure to be downhill, and we get the “trial
point” x+hgp (corresponding tex=1 in Algorithm 5.7). As in a trust re-

gion method (see Section 2.4) we can investigate the value of the cost func-
tion at the trial point, ief (x+hgn). If it is sufficiently below f(x), then the

trial point is chosen as the next iterate. Otherwisés still the current iter-

ate (corresponding ta =0 in Algorithm 5.7), andu is increased. It is not
sufficient to check whethef(x + hgn) < f(x). In order to prove conver-
gence for the whole procedure one needs to test whether the actual decrease
in f-value is larger than some small portion of the decrease predicted by the
quadratic model (5.1b), ie if

p = 00— fOcth) 5, (5.12)

q(0) — g(h)
whered is a small positive number (typically~ 10~3).

We recognize- as thegain factor, (2.24). It is also used to moniter: If r is

close to one, then one may expect the model to be a good approximation to
f in a neighbourhood at, which is large enough to include the trial point,
and the influence of Newton’s method should be increased by decrgasing

If, on the other hand, the actual decreas¢ &f much smaller than expected,
theny must be increased in order to adjust the method more towards steepest
descent. It is important to note that in this case the lengthggfis also
reduced, cf (5.10).

We could use an updating strategy similar to the one employed in Algo-
rithm 2.25,
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if »>0.75
= /3
if r < 0.25 (5.13)
o= k2

However, the discontinuous changegiwhenr is close to 0.25 or 0.75 can
cause a “flutter” that slows down convergence. Therefore, we recommend
to use the equally simple strategy given by

if »>0

= pxmax{t,1— (2r —1)3
elsue 1 {51 ( )°} (5.14)
o= phx2

The two strategies are illustrated in Figure 5.3 and are further discussed in
Nielsen (1999) and Section 3.2 of Madsen et al (2004).

0 0.25 0.75 1 r

Figure 5.3:Updating ofu by (5.13) (dasheded line)
and by (5.14) (full line).

The method is summarized in Algorithm 5.15 below.
Similar to (4.7) we can use the stopping criteria

I/ (%)[loc <1 OF |lhgnll2 < e2(e2 + [I%]]2) - (5.16)

The simplicity of the original Newton method has disappeared in the attempt
to obtain global convergence, but this type of method does perform well in
general.
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Algorithm 5.15. Levenberg—Marquardt type damped Newton
method

begin
X :=Xp; p:= po; found:=false k& :=0; {Initialisation}
repeat
while f”(x)+uI not pos. def. {using. ..}
poi=2p
Solve(f” (x)+uI) hgn = —f'(x) {... Cholesky}
Compute gain factor by (5.12)
if >4 {f decreasés
x := x + hgp {new iteraté
pi=pxmax{i,1— (2r — 1)} {...andu}
else
W=k 2 {increase. but keepx}
k := k+1; Updatefound {see (5.16)
until foundor k£ > kyax
end

Example 5.4. Table 5.5 illustrates the performance of Algorithm 5.15 when applied
to the tricky function (5.5) with the poor starting point. We yse = 1 and
e1=107% g5 = 1072 in (5.16).

T ’
Xk f £ r K
[ 1.00000000, 2.00000000] 1.99e+00 1.33e+00 0.999 1.00e+00
[ 0.55555556, 1.07737607] 6.63e-01 8.23e-01 0.872 3.33e-01
[ 0.18240045, 0.04410287] 1.77e-02 1.84e-01 1.010 1.96e-01
[ 0.03239405, 0.00719666] 5.51e-04 3.24e-02 1.000 6.54e-02
]
]
1
1

[ 0.00200749, 0.00044149 2.11e-06 2.01e-03 1.000 2.18e-02
[ 0.00004283, 0.00000942 9.61e-10 4.28e-05 1.000 7.27e-03
[ 0.00000031, 0.00000007 5.00e-14 3.09e-07 1.000 2.42e-03
[ 0.00000000, 0.00000000 3.05e-19 7.46e-10

~N~No oA WNER O I

Table 5.5:Algorithm 5.15 applied to (5.5x) = [1, 2], uo = 1.

The solution is found without problems, and the columns wfigmd||f’|| show
superlinear convergence, as defined in (2.6). n
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Example 5.5. We have used Algorithm 5.15 on Rosenbrock’s function from Ex-
ample 4.3. We use the same starting paiat—= [ —1.2, 1}T, and withpo = 1,
e1 = 1071% &2 = 1072 we found the solution after 29 iteration steps. The
performance is illustrated below

-1.2 o e NI S Xy

Figure 5.4aDamped Newton method on
Rosenbrock’s function. Iterates.
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Figure 5.4b:f (x1), |If ' (xx)|lco @and p.

The three circles in Figure 5.4a indicates points, where the iterations stalls, ie
the currentx is not changed, byt is updated. After passing the bottom of the
parabola, the damping parameteis decreased in each step. As in the previous
example we achieve superlinear final convergence. (]
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5.3. Quasi—Newton Methods

The modifications discussed in the previous section make it possible to
overcome the first three of the main disadvantages of Newton's method
shown in Table 5.3: The damped Newton method is globally convergent,
ill-conditioning may be avoided, and minima are rapidly located. However,
no means of overcoming the fourth disadvantage has been considered. The
user must still supply formulas and implementations of the second deriva-
tives of the cost function.

In Quasi—Newton method$rom Latin, quasi: nearly) the idea is to use
matrices which approximate the Hessian matrix or its inverse, instead of the
Hessian matrix or its inverse in Newton'’s equation (5.2). The matrices are
normally named

B~ f"(x) and D~f"(x)"!. (5.17)

The matrices can be produced in many different ways ranging from very
simple techniques to highly advanced schemes, where the approximation is
built up and adjusted dynamically on the basis of information about the first
derivatives, obtained during the iteration. These advanced Quasi—Newton
methods, developed in the period from 1959 and up to the present days, are
some of the most powerful methods for solving unconstrained optimization
problems.

Possibly the simplest and most straight-forward Quasi—Newton method is
obtained if the elements of the Hessian matrix are approximated by finite
differences: In each coordinate directien(i=1, ..., n), a small increment

0; is added to the corresponding elemenkaind the gradient in this point

is calculated. The™ column of a matrixB is calculated as thdifference
approximation (f'(x+d,e;) — £'(x)) /6;. After this, the symmetric matrix
B:= 1(B+B')is formed.

If the {6, } are chosen appropriately, this is a good approximatidii'{e)

and may be used in a damped Newton method. However, the alert reader
will notice that this procedure requiresextra evaluations of the gradient

in each iteration — an affair that may be very costly. Further, there is no
guarantee thdB is positive (semi-)definite.
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In the advanced Quasi—Newton methods these extra gradient evaluations are
avoided. Instead we use updating formulas wheréBloe D matrices (see

5.17) are determined from information about the iteratesx,, ... and

the gradients of the cost functiofi;(x;),f’(x2), ... gathered during the
iteration steps. Thus, in each iteration steplhéor D) matrix is changed

so that it finally converges towards'(x*) (or respectivelyf ” (x*) 1), x*

being the minimizer.

5.4. Quasi—Newton with Updating Formulas

We begin this subsection with a short discussion on why approximations
to the inverse Hessian are preferred rather than approximations to the Hes-
sian itself: First, the computational labour in the updating is the same no
matter which of the matrices we update. Second, if we have an approximate
inverse, then the search direction is found simply by multiplying the approx-
imation with the negative gradient ¢t This is anO(n?) process whereas

the solution of the linear system wil as coefficient matrix is a®(n?)
process.

A third possibility is to use approximations to the Cholesky factor of the
Hessian matrix, determined at the start of the iteration and updated in the
iteration. Using these, we can find the solution of the system (5QJir?)
operations. This technique is beyond the scope of this lecture note, but the
details can be found in Dennis and Schnabel (1984). Further, we remark
that early experiments with updating formulas indicated that the updating of
an approximation to the inverse Hessian might become unstable. According
to Fletcher (1987), recent research indicates that this needs not be the case.

A classical Quasi—Newton method with updating always includes a line

search. Alternatively, updating formulas have been used in trust region
methods. Basically, these two different approaches (line search or trust re-
gion) define two classes of methods. In this section we shall confine our-
selves to the line search approach.

With these comments the framework may be presented.
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Framework 5.18. lteration step in Quasi—Newton with updating
and line search. B (or D) is the current approximation " (x)
(orf”(x)~")

SolveBhg, = —f’(x) (or computéhg, := —D f'(x))
Line search alonygn giving hgn := ahgn; Xpew =% + hgn
UpdateB to Bpew  (Or D t0 Dpey)

In the following we present the requirements to the updating and the tech-
nigques needed.

5.5. The Quasi—Newton Condition

An updating formula must satisfy the so-call@iliasi-Newton condition,
which may be derived in several ways. The condition is also referred to as
the secant conditionbecause it is closely related to the secant method for
non-linear equations with one unknown.

Letx andB be the current iterate and approximatiorf tdx). Given these,

the first parts of the iteration step in Framework 5.18 can be performed yield-
ing hgn and hencenew. The objective is to calculaiByew by a correction of

B. The correction must contain some information about the second deriva-
tives. Clearly, this information is only approximate. It is based on the gradi-
ents off at the two points. Now, consider the Taylor expansiofi'airound
x+hgn

f/(X) = fl(x+hqn) — f” (X+hqn)hqn + AR (5.19)
We assume that we can neglect the higher order terms, and with the notation
y = f/(xpew) — £/ (%), (5.20)

equation (5.19) leads to the relation, similar to (4.5),
y >~ £ (Xnew)hqn -
Therefore, we require th&,, should satisfy
Bnewhqn =Y. (5.21a)
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This is theQuasi—Newton conditioriThe same arguments lead to the alter-
native formulation of the Quasi—Newton condition,

Dnewy = hqn . (5.21b)

The Quasi—Newton condition only suppliegonditions on the matriBB e
(or Dpeyw) but the matrix has? elements. Therefore additional conditions
are needed to get a well defined method.

In the Quasi—-Newton methods that we describe Bh@r D) matrix is up-
dated in each iteration step. We prodie,, (or Dyey) by adding a correc-

tion term to the preser8 (or D). Important requirements to the updating
are that it must be simple and fast to perform and yet effective. This can be
obtained with a recursive relation between successive approximations,

Bnew:B+Wa

whereW is a correction matrix. In most methods used in pracfidejs a
rank-one matrix

Bnew = B + abT
or arank-two matrix
Bpew=B +ab' +uv' ,

wherea, b, u,v€R". HenceW is anouter productof two vectors or a
sum of two such products. Often=b andu = v; this is a simple way of
ensuring thaW is symmetric.

5.6. Broyden’s Rank-One Formula

Tradition calls for a presentation of the simplest of all updating formulas
which was first described by Broyden (1965). It was not the first updating
formula but we present it here to illustrate some of the ideas and techniques
used to establish updating formulas.

First, consider rank-one updating of the maix
Brew=B +ab' .
The vectorsa,b € R" are chosen so that they satisfy the Quasi—Newton
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condition (5.21a),
(B+ab' )hgpn=y, (5.22a)

and — in an attempt to keep information alreadyBnr- Broyden demands
that for allv orthogonal tdhy, we getBpewv = Bv, ie

(B+ab')v=Bv forallv|v hgp=0. (5.22b)

These conditions are satisfied if we tdke= hg, and the vectorn deter-
mined by

(h—gnhqn)a - y - thn .
This results inBroyden’s rank-one formuléor updating the approximation
to the Hessian:
1
Brew =B + —hT h (y - thn>hgn . (5.23)
gn*ign
A formula for updating an approximation to the inverse Hessian may be
derived in the same way and we obtain

1
DneW = D + ﬁ (hqn — Dy)yT . (5.24)

The observant reader will notice the symmetry between (5.23) and (5.24).
This is further discussed in Section 5.10.

Now, given some initial approximatio, (or Bg) (the choice of which

shall be discussed later), we can use (5.23) or (5.24) to generate the sequence
needed in the framework. However, two important features of the Hessian
(or its inverse) would then be disregarded: We wish both matiResd

D to be symmetric and positive definite. This is not the case for (5.23)
and (5.24), and thus the use of Broyden’s formula may lead to steps which
are not even downhill, and convergence towards saddle points or maxima
will often occur. Therefore, these formulas are never used for unconstrained
optimization.

Broyden’s rank-one formula was developed for solving systems of non-
linear equations. Further, the formulas have several other applications, eg in
methods for least squares and minimax optimization.
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5.7. Symmetric Updating

Sincef”(x)~! is symmetric, it is natural to requir® to be so. If at the
same time rank-one updating is required, the basic recursion must have the
form

Dpew=D +uu' . (5.25a)

The Quasi—Newton condition (5.21b) determineaniquely: Substituting
(5.25) into (5.21b) and letting denotehg, yields

h=Dy+uu'y <= h-Dy=(uy)u. (5.25b)

This shows thati = v(h — Dy), wherey is the scalaty =u' y. By rescal-
ing u we get theSR1 formulgsymmetric rank-one updating formula)
1 .
Dpew=D + —— uu' with u =h — Dy . (5.26)
uy

It may be shown that ih = Dy, thenDye, = D is the only solution to the
problem of finding a symmetric rank-one update which satisfies (5.21ab). If,
howevery ™ u = 0 while at the same timh # Dy, then there is no solution,
and the updating breaks down. Thus, in case the denominator becomes small
we simply sefDnew = D and avoid division by zero.

The SR1 formula has some interesting properties. The most important is that
a Quasi—Newton method without line search based on SR1 will minimize a
quadratic function with positive definite Hessian in at moestl iteration
steps, provided the search directions are linearly independent 'amde-
mains positive. Further, in this caBke, equalsf ”(x*)~! aftern+1 steps.

This important property is calleguadratic termination¢f Section 4.1.

The SR1 formula has only been used very little in practice. This is due to
the fact thaty" u may vanish, whereby numerical instability is introduced
or the updating breaks down.

A similar derivation gives the SR1 formula for approximations tgx),

1 .
Brew=B + — vv' with v =y — Bh,
h'v

and similar comments can be made.
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5.8. Preserving Positive Definiteness

Consider Newton’s equation (5.2) or a Quasi—Newton equation based on
(5.17). The step is determined by

Gh=—f'(x),

whereG = f”(x) (Newton) or —in the case of Quasi—-Newtdk,= B or
G = D!, From Theorem 2.14 on page 14 it follows thais a downhill
direction if G is positive definite, and this is a property worth striving for.

If we useD = I (the identity matrix) in all the steps in the Quasi—Newton
framework 5.18, then the method of steepest decent appears. As discussed
in Chapter 3 this method has good global convergence properties, but the
final convergence is often very slow. If, on the other hand, the iterates are
near the solutiox*, a Newton method (and also a Quasi—Newton method
with good Hessian approximations) will give good performance, close to
quadratic convergence. Thus a good strategy for the updating would be to
useD close tol in the initial iteration step and then successivelylleap-
proximatef ” (x) ! better and better towards the final phase. This will make
the iteration start like the steepest descent and end up somewhat like New-
ton’s method. If, in addition, the updating preserves positive definiteness for
all coefficient matrices, all steps will be downhill and a reasonable rate of
convergence can be expected, sifi¢éx) ! is positive (semi-)definite at a
minimizer.

5.9. The DFP Formula

One of the first updating formulas was proposed by Davidon in 1959. This
formula actually has the capability of preserving positive definiteness. The
formula was later developed by Fletcher and Powell in 1963, and it is called
the DFP formula. A proper derivation of this formula is very lengthy, so we
confine ourselves to the less rigorous presentation given by Fletcher (1987).

The first observation is that a greater flexibility is allowed for with a rank-
two updating formulas, simply because more terms may be adjusted. A
symmetric rank-two formula can be written as

Dpew=D + uu' +vv' .
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We insert this in the Quasi—Newton condition (5.21b) and get
h=Dy+uu'y+vv'y.

With two updating terms there is no unique determinatiom @ndv, but
Fletcher points out that an obvious choice is to try

u = ch, v = 6Dy .

Then the Quasi-Newton condition will be satisfied Wf y=1 and
vy = —1, and this yields the formula

Definition 5.27. DFP updating.

1+ 1 4
DneW:D+ﬁyhh _yT_vVV ,
where

h=xpew—%, y="Ff'(Xpew) —f'(x), v=Dy.

This was the dominating formula for more than a decade and it was found
to work well in practice. In general it is more efficient than the conjugate
gradient method (see Chapter 4). Traditionally it has been used in Quasi—
Newton methods with exact line search, but it may also be used with soft line
search as we shall see in a moment. A method like this has the following
important properties:

On quadratic objective functions with positive definite Hessian:
a) itterminates in at most iterations withDpey = £ (x*) 71,

b) it generates conjugate directions,

c) itgenerates conjugate gradient®if =1,

provided that the method uses exact line search.

On general functions:

d) it preserves positive definil®-matrices ithnTy > 0in all steps,
e) itgives superlinear final convergence,

f) it gives global convergence for strictly convex objective functions pro-
vided that the line searches are exact.
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Here we have a method with superlinear final convergence (defined in (2.6)).
Methods with this property are very useful because they finish the iteration
with fast convergence. Also, in this case

I — nel| < [|x* —x|| for k — oo,

implying that||xnew — x|| can be used to estimate the distance fsoto x*.

Example 5.6. The proof of property d) in the above list is instructive, and therefore
we give it here:

Assume thaD is positive definite. Then it€holesky factoexists:D = CC',
and for any non-zera € R™ we use Definition 5.27 to find

(z'h)*  (z'Dy)?

hy  y Dy °

We introducea=C"z, b= C"y andf = Z(a, b), cf (2.12), and get
(a'b)® | (z'h)?

ZTDnev\/Z = XTDZ+

ZT Dnewz aT a—

b™b h'y
T2
2 2 (z h)
= [la]|* (1 — cos® 0) + Ty

If h"y >0, then both terms on the right-hand side are non-negative. The first
term vanishes only i# =0, ie whena andb are proportional, which implies
thatz andy are proportionalz = By with 5 # 0. In this case the second term
becomeg By  h)?/h"y which is positive due to the basic assumption. Hence,
z' Dpewz > 0 for any non-zera andDiey is positive definite. (]

The essential conditioh’ y > 0 is called thecurvature conditiorbecause it
can be expressed as

h'fl,, >h'f’. (5.28)

Notice, that if the line search slope condition (2.17) is satisfied then (5.28)
is also satisfied sinde’ f’ = /(0) andh' £/, = ¢’ (a), wherep(a) is the
line search function defined in Section 2.3.

The DFP formula with exact line search works well in practice and has been
widely used. When the soft line search methods were introduced, however,
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the DFP formula appeared less favorable because it sometimes fails with
a soft line search. In the next section we give another rank-two updating
formula which works better, and the DFP formula only has theoretical im-
portance today. The corresponding formula for updating approximations to
the Hessian itself is rather long, and we omit it here.

At this point we shall elaborate on the importance of using soft line search
in Quasi Newton methods. The number of iteration steps will usually be
larger with soft line search than with exact line search, but the total number
of function evaluations needed to minimiZewill be considerably smaller.
Clearly, the purpose of using soft line search is to be able to take the steps
which are proposed by the Quasi Newton method directly. In this way we
can avoid a noticeable number of function evaluations in each iteration step
for the determination of the exact minimum pfalong the line. Further, in

the final iterations, the approximations to the second order derivatives are
usually remarkably good and the Quasi—Newton method obtains a fine rate
of convergence (see below).

5.10. The BFGS Formulas

The final updating formulas to be discussed in this note are known as the
BFGS formulasThey were discovered independently by Broyden, Fletcher,
Goldfarb and Shanno in 1970. These formulas are the most popular of all
the updating formulas, described in the literature.

As we saw with the DFP formula, the BFGS formulas are difficult to de-
rive directly from the requirements. However, they arrive in a simple way
through the concept aduality, which will be discussed briefly here. Re-
member the Quasi—Newton conditions (5.21):

Bhewh =y and Dpewy = h..

These two equations have the same form, exceptlihatdy are inter-
changed andey is replaced byDew. This implies that any updating for-
mula forB which satisfies (5.21a) can be transformed into an updating for-
mula forD. Further, any formula foD has a dual formula foB which is
found by the substitutiorD <« B and h < y . Performing this operation

on the DFP formula (5.27) yields the following updating formula,
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Definition 5.29. BFGS updating.

1 T 1 T
Brew = B"‘Ty}’}’ _ﬂuu )

where
h=xpew—%, y="Ff'(xpew) —f'(x), u=Bh.

This updating formula has much better performance than the DFP formula;
see Nocedal (1992) for an excellent explanation why this is the case. If we
make the dual operation on the BFGS update we return to the DFP updating,
as expected. The BFGS formula produBewhich converges té” (x*) and

the DFP formula producd® which converges t6” (x*) 1.

Alternatively, we can find another set of matrigdd} which has the same
convergence, although it is different from thematricess produced by DFP.
The BFGS formula is a rank two update, and there are formulas which give
the corresponding update fB— :

Definition 5.30. BFGS updating forD
Dpew = D+ x1hh" — k5 (hv! +vh') |
where
h = Xpew — X, y = f'(xnew) — £'(x), v =Dy,

1

Ko = Ty s R1 = K/Q(]_ + fiQ(yTV)) .

The BFGS formulas are always used together with a soft line search and
as discussed above the procedure should be initiated with the full Quasi—
Newton step in each iteration step, ie the initiagh Algorithm 2.27 should

be one. Experiments show that it should be implemented with a very loose
line search; typical values for the parameters in (2.26)0are 10~* and

6 =0.9.

The properties a) —f) of the DFP formula also hold for the BFGS formulas.
Moreover, Powell has proved a better convergence result for the latter for-
mulas namely that they will also converge with a soft line search on convex
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problems. Unfortunately, convergence towards a stationary point has not
been proved for neither the DFP nor the BFGS formulas on general non-
linear functions — no matter which type of line search. Still, BFGS with soft
line search is known as the method which never fails to come out with a
stationary point.

5.11. Quadratic Termination

We indicated above that there is a close relationship between the DFP-
update and the BFGS-updates. Still, their performances are different with
the DFP update performing poorly with soft line search. Broyden suggested
to combine the two sets of formulas:

Definition 5.31. Broyden’s one parameter family.
Dpew = D +0Wpprp+ (1-0)Wares,

where0 < o < 1 and Wpgp and Wgegs are the updating terms in
Definitions 5.27) and (5.30), respectively.

The parametes can be adjusted during the iteration, see Fletcher (1987)
for details. He remarks that= 0, pure BFGS updating is often the best.

We want to state a result for the entire Broyden family, a result which con-
sequently is true for both DFP and BFGS. The result is concerned with
guadratic termination

Remark 5.32. The Broyden one parameter updating formula gives
quadratic termination for all values ef(0 <o < 1), provided thaiD,
is positive definite.

This implies that a Quasi—Newton method with exact line search deter-
mines the minimizer of a positive definite quadratic after no more than
n iteration stepsi{ being the dimension of the space).

The basis of all the updating formulas in this chapter is the Quasi—Newton
conditions (5.21a—b). This corresponds to a linear interpolation in the gra-
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dient of the cost function. If the cost function is quadratic, then its gradient
is linear inx, and so is its approximation. When the Quasi—Newton con-
dition has been enforced im steps, the two linear functions agreerin-1
positions in R, and consequently the two functions are identical. Iterate
no.n+1, xnew, Makes the gradient of the approximation equal to zero, and
so it also makes the gradient of the cost function equal to zero; it solves the
problem. The proviso that the quadratic ddg must be positive definite,
ensures thakney is NOt only a stationary point, but also a minimizer.

5.12. Implementation of a Quasi—-Newton Method

In this section we shall discuss some details of the implementation and end
by giving the Quasi—Newton algorithm with the different parts assembled.

Based on the discussion in the previous sections we have chosen a BFGS
updating formula, and for the reasons given on page 53, an update of the
inverse Hessian has been chosen. For student exercises and preliminary re-
search this update is adequate, but even thdbdgh theory stays positive
definite, the rounding errors may cause ill conditioning and even indefinite-
ness. For professional codes updating dactorizationof the Hessian is
recommended such that the effect of rounding errors can be treated prop-
erly. In the present context a less advanced remedy is described which is to
omit the updating if the curvature condition (5.28) does not hold, since in
this casdDnewWould not be positive definite. Actually, Dennis and Schnabel
(1984) recommend that the updating is skipped if

W'y <ey’ b [yl . (5.33)

whereey, is themachine precision.

We shall assume the availability of a soft line search such as Algorithm 2.27.
It is important to notice that all the function evaluations take place during
the line search. Hence, the valuesfadndf’ at the new point are recieved
from the line search subprogram. In the next iteration step these values are
returned to the subprogram such thfaandf’ for o =0 are ready for the

next search. Sometimes the gradient needs not be calculated as often as
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In a production code the line search should only calcufatespectivelyf ’
whenever they are needed.

As regards the initial approximation to the inverse Hesslay, it is tra-
ditionally recommended to us®, = I, the identity matrix. ThidDy is,

of course, positive definite and the first step will be in the steepest descent
direction.

Finally, we outline an algorithm for a Quasi—Newton method. Actually, the
curvature condition (5.28) needs not be tested because it is incorporated in
the soft line search as stopping criterion (2.26b).

Algorithm 5.34. Quasi—Newton method with BFGS—updating

begin

x:=Xg; D:=Dgy; k:=0; nv:=0

while ||f'(x)|| > e and k < kpax @nd nv < nvmax
hgn =D (—f'(x)) {Quasi—Newton equatign
[a, dv] := softline_searclix, hqp) {Algorithm 2.27}
nv = nv + dv {No. of function evaluatioris
Xnew := X + ahgn; k= k+1
if hgf’ (Xnew) > hiaf’(x)

UpdateD

X = Xpew

{Initialisation}

{Condition (5.28})
{using 5.30

end

Example 5.7. We consider Rosenbrock’s function from Examples 4.3 and 5.5. We
have tried different updating formulas and line search methods. The line search
parameters were chosen as in Example 4.3.

With the starting pointky = [—1.2, 1]", the following numbers of iteration
steps and evaluations ¢fx) andf’(x) are needed to satisfy the stopping crite-
rion ||f/(x)|| < 1070,

The results are as expected: BFGS combined with soft line search needs the
smallest number of function evaluations to find the solution.

5.12. Implementation of a Quasi—Newton Method

Update by | Line search| #it. steps| # fct. evals
DPF exact 23 295
DPF soft 31 93

BFGS exact 23 276
BFGS soft 29 68

Below we give the iterates (cf Figures 4.2, 4.3 and 5.4) and the valugsqi
and||f’ (xx)||oo- As with the Damped Newton Method we have superlinear final
convergence.

le-5r o5
le-10{ o ¥

o152 1]
0 5

10 15 20 25 30
Figure 5.5:BFGS with soft line search, applied to

Rosenbrock’s function.
Top: iteratesx,.  Bottom: f(xx) and ||f’(xx)]| -

The number of iteration steps is about the same as in Example 5.5, while the
number of function evaluations is almost four times as big. Note, however, that
with Algorithm 5.34 each evaluation involvg$x) andf ’(x), while each evalu-
ation in the Damped Newton Method also involves the Hesligx). For many
problems this is not available. If it is, it may be costly: we need to compute
1n(n+1 elements in the symmetric matrf’(x), while f'(x) hasn elements

only. [
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APPENDIX

A. Symmetric, Positive Definite Matrices

A matrix AcR™ ™ is symmetric ifA = A, ie if a;; = a;; for all , 5.

Definition A.1. The symmetric matribA € R"*" is
positive definite if x"Ax>0 forall x€R", x#£0,
positive semidefiniteif x'Ax >0 forall x€R", x#0.

Such matrices play an important role in optimization, and some useful properties are
listed in

Theorem A.2. A eR™*™ be symmetric and leA = LU, whereL is a unit

lower triangular matrix an@J is an upper triangular matrix. Then

1° (All uz; >0, i=1,...,n) <= (A is positive definitg .

If A is positive definite, then

2° The LU-factorization is numerically stable.

3° U = DL’ with D = diag(u.:).

4° A = CCT, theCholesky factorizationC € R"*" is a lower triangular
matrix.

Proof. See eg Golub and Van Loan (1996), Nielsen (1996) oeklet al (2004)]

A unit lower triangular matrixL is characterized by;; = 1 and/¢;; = 0 for j>1.

Note, that the LU-factorizatiodA = LU is made withoupivoting (which, by the
way, could destroy the symmetry). Also note that poBits4° give the following
relation between the LU- and the Cholesky-factorization

A=LU=LDL'" =cc’ (A.33)
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with
c=LD'?, D2 =diagyux) - (A.3b)

The Cholesky factorization with test for positive definiteness can be implemented as
follows. (This algorithm does not rely on (A.3), but is derived directly frétnin
Theorem A.2).

Algorithm A.4. Cholesky factorization.

begin
k := 0; posdef:= true {Initialisation}
while posdefand & < n
k:=k+1
d = apx — 351 (ery)?
ifd>0 {test for pos. det.
crr = Vd {diagonal element

fori:=k+1,...,n
k—1
Cik = (aik =i Cz’jckj> /Chkc

else
posdef.= false

{subdiagonal elemerits

end

The “cost” of this algorithm i€ (n?) operations.

This algorithm can eg be used in Algorithm 5.15. Actually it is the cheapest way to
check for positive-definiteness.

The solution to the system
Ax=Db

can be computed via the Cholesky factorization: Insering= CC" we see that
the system splits into

Cz=b and C'x=1z.

The two triangular systems are solved by forward- and back-substitution, respec-
tively.
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Algorithm A.5. Cholesky solve.

begin
fork:=1,...,n—-1,n {forward}
2k = (bk — 25711 Ck]Z7) /Ckk
for k :=n,n—1,...,1 {back

end

The “cost” of this algorithm i< (n?) operations.

B. Proof of Theorem 4.12
We shall use induction to show that fpe=1, ..., n:
h;Hh; =0 foralli<j. (B.1)

We use the notatiog; = f'(x;) and define the search directionsloy= x; —x;_1.
Then (4.5) leads to

Hh, = g- —gr—1, (B.2)
and Algorithm 4.6 and (4.11) combine to -
hy 11 = art1 (—gr + 'yy-aflhy-) with  ~, = .rgri , (B.3)
grflgr—l

and ;1 found by exact line search. Finally, we remind the reader of (4.10) and
(4.9)

hig, =0 and o, h.g =-g g . (B.4)
Now, we are ready for the induction:

For j=1, (B.1) is trivially satisfied, there is nh; vector withi<1.

Next, assume that (B.1) holds for gl=1, . . ., k. Then it follows from the proof of
Theorem 4.8 that

gih;, =0 fori=1,... k. (B.5)
If we insert (B.3), we see that this implies

0= gl (*gz‘—l + ’Yi—la;_llhi—l) = *g;giq .

C. Proof of (5.9) 70

Thus, the gradients at the iterates are orthogonal,
grgi =0 fori=1,...,k—1. (B.6)
Now, we will show that (B.1) also holds fgr= k+1 :
ot hi Hhyyp =hi H (—ge + oy, 'hy)
= fg—IEHhi + 'ykaglh;rH hy
=g (8 —gi—1) + oy 'hHhy .

Fori < k each term is zero according to (B.1) b k£ and (B.5).
Fori = k also the terng;, gr—1 = 0, and we get

ot hHhey = —gige + oy, 'hy (8r — 8r-1)
= g8+ (0+gi18k-1) = 0 .

In the first reformulation we use both relations in (B.4), and next we use the definition
of v in (B.3).

Thus, we have shown that (B.1) also holds joe k41 and thereby finished the
proof. O

C. Proof of (5.9)

The symmetric matridl = " (x) € R**" has real eigenvalug\;}7—,, and we
can choose an orthogonal set of corresponding eigenveptols

Hv, = \jv;,j=1,...,n with v]v; =0 for i#j.

It is easy to show thaH is positive definite if and only if all the eigenvalues are
strictly positive.

From the above equation we get
H+phv; =N+ vy, j=1,...,n,

and we see thdf + pI is positive definite for alpy > min{min A;, 0}. O
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D. Proof of Theorem 5.11

In (5.8) we introduced the function

qu(h) = q(h) + $puh"h with ©>0,
wheregq is given by (5.1b). The gradient gf, is

d, = d +ph = g+ (H+puhh,

whereg = f'(x), H = f”(x). According to the assumption, the matiik+p1 is
positive definite, and therefore the linear system of equatigns- 0 has a unique
solution, which is the minimizer af,,. This solution is recognized &gn.

Now, let
hy = argmin, <, {g(h)} -
Theng(hm) < g(hu) andhjyhy < hl han, SO that
qu(bm) = g(hu) + 2phyhw < g(han) + 2phichan = gy (han) -

However hg, is the unique minimizer of,, sohy = hgn. O
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