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1. INTRODUCTION AND DEFINITIONS

In this booklet we consider the following problem,

Definition 1.1. Least Squares Problem

Findx∗, a local minimizer for1)

F (x) = 1
2

m∑
i=1

(fi(x))2
,

wherefi : IRn 7→ IR, i= 1, . . . ,m are given functions, andm≥n.

Example 1.1. An important source of least squares problems isdata fitting. As an
example consider thedata points(t1, y1), . . . , (tm, ym) shown below

t

y

Figure 1.1. Data points{(ti, yi)} (marked by+)
and modelM(x, t) (marked by full line.)

Further, we are given afitting model,

M(x, t) = x3e
x1t + x4e

x2t .

1) The factor1
2

in the definition ofF (x) has no effect onx∗. It is introduced for conve-
nience, see page 18.
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The model depends on theparametersx = [x1, x2, x3, x4]>. We assume that
there exists anx† so that

yi = M(x†, ti) + εi ,

where the{εi} are (measurement) errors on the data ordinates, assumed to be-
have like “white noise”.

For any choice ofx we can compute theresiduals

fi(x) = yi −M(x, ti)

= yi − x3e
x1ti − x4e

x2ti , i= 1, . . . ,m .

For aleast squares fitthe parameters are determined as the minimizerx∗ of the
sum of squared residuals. This is seen to be a problem of the form in Defini-
tion 1.1 withn= 4. The graph ofM(x∗, t) is shown by full line in Figure 1.1.

A least squares problem is a special variant of the more general problem:
Given a functionF : IRn 7→IR, find an argument ofF that gives the minimum
value of this so-calledobjective functionor cost function.

Definition 1.2. Global Minimizer
GivenF : IRn 7→ IR. Find

x+ = argminx{F (x)} .

This problem is very hard to solve in general, and we only present meth-
ods for solving the simpler problem of finding a local minimizer forF , an
argument vector which gives a minimum value ofF inside a certain region
whose size is given byδ, whereδ is a small, positive number.

Definition 1.3. Local Minimizer
GivenF : IRn 7→ IR. Findx∗ so that

F (x∗) ≤ F (x) for ‖x− x∗‖ < δ .

In the remainder of this introduction we shall discuss some basic concepts in
optimization, and Chapter 2 is a brief review of methods for finding a local



3 1. INTRODUCTION AND DEFINITIONS

minimizer for general cost functions. For more details we refer to Frandsen
et al (2004). In Chapter 3 we give methods that are specially tuned for least
squares problems.

We assume that the cost functionF is differentiable and so smooth that the
following Taylor expansionis valid,2)

F (x+h) = F (x) + h>g + 1
2
h>H h +O(‖h‖3) , (1.4a)

whereg is thegradient,

g ≡ F ′(x) =


∂F

∂x1
(x)

...

∂F

∂xn
(x)

 , (1.4b)

andH is theHessian,

H ≡ F ′′(x) =
[
∂2F

∂xi∂xj
(x)
]
. (1.4c)

If x∗ is a local minimizer and‖h‖ is sufficiently small, then we cannot find a
pointx∗+h with a smallerF -value. Combining this observation with (1.4a)
we get

Theorem 1.5. Necessary condition for a local minimizer.
If x∗ is a local minimizer, then

g∗ ≡ F ′(x∗) = 0 .

We use a special name for arguments that satisfy the necessary condition:

Definition 1.6. Stationary point. If

gs ≡ F ′(xs) = 0 ,

thenxs is said to be astationary pointfor F .

2) Unless otherwise specified,‖ · ‖ denotes the 2-norm,‖h‖ =
√
h2

1 + · · ·+ h2
n.
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Thus, a local minimizer is also a stationary point, but so is a local maximizer.
A stationary point which is neither a local maximizer nor a local minimizer
is called asaddle point. In order to determine whether a given stationary
point is a local minimizer or not, we need to include the second order term
in the Taylor series (1.4a). Insertingxs we see that

F (xs+h) = F (xs) + 1
2h>Hs h +O(‖h‖3)

with Hs = F ′′(xs) .
(1.7)

From definition (1.4c) of the Hessian it follows that anyH is a symmetric
matrix. If we request thatHs is positive definite, then its eigenvalues are
greater than some numberδ > 0 (see Appendix A), and

h>Hs h > δ ‖h‖2 .
This shows that for‖h‖ sufficiently small the third term on the right-hand
side of (1.7) will be dominated by the second. This term is positive, so that
we get

Theorem 1.8. Sufficient condition for a local minimizer.
Assume thatxs is a stationary point and thatF ′′(xs) is positive definite.
Thenxs is a local minimizer.

If Hs is negative definite, thenxs is a local maximizer. IfHs is indefinite(ie
it has both positive and negative eigenvalues), thenxs is a saddle point.
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All methods for non-linear optimization are iterative: From a starting point
x0 the method produces a series of vectorsx1,x2, . . ., which (hopefully)
converges tox∗, a local minimizer for the given function, see Definition 1.3.
Most methods have measures which enforce thedescending condition

F (xk+1) < F (xk) . (2.1)

This prevents convergence to a maximizer and also makes it less probable
that we converge towards a saddle point. If the given function has several
minimizers the result will depend on the starting pointx0. We do not know
which of the minimizers that will be found; it is not necessarily the mini-
mizer closest tox0.

In many cases the method produces vectors which converge towards the
minimizer in two clearly different stages. Whenx0 is far from the solution
we want the method to produce iterates which move steadily towardsx∗.
In this “global stage” of the iteration we are satisfied if the errors do not
increase except in the very first steps, ie

‖ek+1‖ < ‖ek‖ for k >K ,

whereek denotes the current error,

ek = xk − x∗ . (2.2)

In the final stage of the iteration, wherexk is close tox∗, we want faster
convergence. We distinguish between

Linear convergence:

‖ek+1‖ ≤ a‖ek‖ when‖ek‖ is small; 0 < a < 1 , (2.3a)
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Quadratic convergence:

‖ek+1‖ = O(‖ek‖2) when‖ek‖ is small, (2.3b)

Superlinear convergence:

‖ek+1‖/‖ek‖ → 0 for k→∞ . (2.3c)

The methods presented in this lecture note are descent methods which sat-
isfy the descending condition (2.1) in each step of the iteration. One step
from the current iterate consists in

1. Find a descent directionhd (discussed below), and

2. find a step length giving a good decrease in theF -value.

Thus an outline of a descent method is

Algorithm 2.4. Descent method

begin
k := 0; x := x0; found:= false {Starting point}
while (not found) and (k < kmax)

hd := searchdirection(x) {Fromx and downhill}
if (no suchh exists)

found:= true {x is stationary}
else
α := steplength(x,hd) {from x in directionhd}
x := x + αhd; k := k+1 {next iterate}

end

Consider the variation of theF -value along the half line starting atx and
with directionh. From the Taylor expansion (1.4a) we see that

F (x+αh) = F (x) + αh>F ′(x) +O(α2)

' F (x) + αh>F ′(x) for α sufficiently small. (2.5)

We say thath is adescent directionif F (x+αh) is a decreasing function of
α atα= 0. This leads to the following definition.
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Definition 2.6. Descent direction.

h is a descent direction forF atx if h>F ′(x) < 0 .

If no suchh exists, thenF ′(x) = 0, showing that in this casex is stationary.
Otherwise, we have to chooseα, ie how far we should go fromx in the
direction given byhd, so that we get a decrease in the value of the objective
function. One way of doing this is to find (an approximation to)

αe = argminα>0{F (x+αh)} . (2.7)

The process is calledline search, and is discussed in Section 2.3. First,
however, we shall introduce two methods for computing a descent direction.

2.1. The Steepest Descent method
From (2.5) we see that when we perform a stepαh with positiveα, then the
relative gain in function value satisfies

lim
α→0

F (x)− F (x+αh)
α‖h‖ = − 1

‖h‖ h>F ′(x) = −‖F ′(x)‖ cos θ ,

whereθ is the angle between the vectorsh andF ′(x). This shows that we
get the greatest gain rate ifθ=π, ie if we use the steepest descent direction
hsd given by

hsd = −F ′(x) . (2.8)

The method based on (2.8) (iehd = hsd in Algorithm 2.4) is called thesteep-
est descent methodor gradient method. The choice of descent direction is
“the best” (locally) and we could combine it with an exact line search (2.7).
A method like this converges, but the final convergence is linear and often
very slow. Examples in Frandsen et al (2004) show how the steepest descent
method with exact line search and finite computer precision can fail to find
the minimizer of a second degree polynomial. For many problems, however,
the method has quite good performance in the initial stage of the iterative
process.

2.2. Newton’s Method 8

Considerations like this has lead to the so-calledhybrid methods, which – as
the name suggests – are based on two different methods. One which is good
in the initial stage, like the gradient method, and another method which is
good in the final stage, like Newton’s method; see the next section. A major
problem with a hybrid method is the mechanism which switches between
the two methods when appropriate.

2.2. Newton’s Method
We can derive this method from the condition thatx∗ is a stationary point.
According to Definition 1.6 it satisfiesF ′(x∗) = 0. This is a nonlinear sys-
tem of equations, and from the Taylor expansion

F ′(x+h) = F ′(x) + F ′′(x)h +O(‖h‖2)

' F ′(x) + F ′′(x)h for ‖h‖ sufficiently small

we deriveNewton’s method:Findhn as the solutions to

H hn = −F ′(x) with H = F ′′(x) , (2.9a)

and compute the next iterate by

x := x + hn . (2.9b)

Suppose thatH is positive definite, then it is nonsingular (implying that
(2.9a) has a unique solution), andu>H u> 0 for all nonzerou. Thus, by
multiplying with h>n on both sides of (2.9a) we get

0 < h>n H hn = −h>n F ′(x) , (2.10)

showing thathn is a descent direction: it satisfies the condition in Defini-
tion 2.6.

Newton’s method is very good in the final stage of the iteration, wherex is
close tox∗. One can show (see Frandsen et al (2004)) that if the Hessian
at the solution is positive definite (the sufficient condition in Theorem 1.8
is satisfied) and if we are at a position inside the region aroundx∗ where



9 2. DESCENTMETHODS

F ′′(x) is positive definite, then we get quadratic convergence (defined in
(2.3)). On the other hand, ifx is in a region whereF ′′(x) is negative definite
everywhere, and where there is a stationary point, the basic Newton method
(2.9) would converge (quadratically) towards this stationary point, which
is a maximizer. We can avoid this by requiring that all steps taken are in
descent directions.

We can build a hybrid method, based on Newton’s method and the steepest
descent method. According to (2.10) the Newton step is guaranteed to be
downhill if F ′′(x) is positive definite, so a sketch of the central section of
this hybrid algorithm could be

if F ′′(x) is positive definite
h := hn

else
h := hsd

x := x + αh

(2.11)

Here,hsd is the steepest descent direction andα is found by line search; see
Section 2.3. A good tool for checking a matrix for positive definiteness is
Cholesky’s method (see Appendix A) which, when successful, is also used
for solving the linear system in question. Thus, the check for definiteness is
almost for free.

In Section 2.4 we introduce some methods, where the computation of the
search directionhd and step lengthα is done simultaneously, and give a
version of (2.11) without line search. Such hybrid methods can be very
efficient, but they are hardly ever used. The reason is that they need an im-
plementation ofF ′′(x), and for complicated application problems this is not
available. Instead we can use a so-calledQuasi-Newton method,based on
series of matrices which gradually approachH∗= F ′′(x∗). In Section 3.4
we present such a method. Also see Chapter 5 in Frandsen et al (2004).

2.3. Line Search
Given a pointx and a descent directionh. The next iteration step is a move
from x in directionh. To find out, how far to move, we study the variation
of the given function along the half line fromx in the directionh,

2.3. Line Search 10

ϕ(α) = F (x+αh) , x andh fixed, α≥ 0 . (2.12)

An example of the behaviour ofϕ(α) is shown in Figure 2.1.

α

y
y = φ(0)

y = φ(α)

Figure 2.1. Variation of the cost
function along the search line.

Ourh being a descent direction ensures that

ϕ ′(0) = h>F ′(x) < 0 ,

indicating that ifα is sufficiently small, we satisfy the descending condition
(2.1), which is equivalent to

ϕ(α) < ϕ(0) .

Often, we are given an initial guess onα, egα= 1 with Newton’s method.
Figure 2.1 illustrates that three different situations can arise

1◦ α is so small that the gain in value of the objective function is very
small.α should be increased.

2◦ α is too large:ϕ(α)≥ϕ(0). Decreaseα in order to satisfy the descent
condition (2.1).

3◦ α is close to the minimizer1) of ϕ(α). Accept thisα-value.

1) More precisely: the smallest local minimizer ofϕ. If we increaseα beyond the interval
shown in Figure 2.1, it may well happen that we get close to another local minimum
for F .
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An exact line searchis an iterative process producing a seriesα1, α2 . . . .
The aim is to find the true minimizerαe defined in (2.7), and the algorithm
stops when the iterateαs satisfies

|ϕ′(αs)| ≤ τ |ϕ′(0)| ,
whereτ is a small, positive number. In the iteration we can use approxima-
tions to the variation ofϕ(α) based on the computed values of

ϕ(αk) = F (x+αkh) and ϕ′(αk) = h>F ′(x+αkh) .

See Sections 2.5 – 2.6 in Frandsen et al (2004) for details.

Exact line search can waste much computing time: Whenx is far fromx∗

the search directionh may be far from the directionx∗−x, and there is no
need to find the true minimum ofϕ very accurately. This is the background
for the so-calledsoft line search,where we accept anα-value if it does not
fall in the categories1◦ or 2◦ listed above. We use a stricter version of the
descending condition (2.1), viz

ϕ(αs) ≤ ϕ(0) + γ1 · ϕ′(0) · α with 0<γ1< 1 . (2.13a)

This ensures that we are not in case2◦. Case1◦ corresponds to the point
(α,ϕ(α)) being too close to the starting tangent, and we supplement with
the condition

ϕ′(αs) ≥ γ2 · ϕ′(0) with γ1 < γ2 < 1 . (2.13b)

If the starting guess onα satisfies both these criteria, then we accept it as
αs. Otherwise, we have to iterate as sketched for exact line search. Details
can be seen in Section 2.5 of Frandsen et al (2004).

2.4. Trust Region and Damped Methods
Assume that we have amodelL of the behaviour ofF in the neighbourhood
of the current iteratex,

F (x+h) ' L(h) ≡ F (x) + h>c + 1
2
h>B h , (2.14)

2.4. Trust Region and Damped Methods 12

wherec∈ IRn and the matrixB∈ IRn×n is symmetric. The basic ideas of this
section may be generalized to other forms of the model, but in this booklet
we only need the form ofL given in (2.14). Typically, the model is a second
order Taylor expansion ofF aroundx, like the first three terms in the right-
hand side of (1.4a), orL(h) may be an approximation to this expansion. It
is generally true that such a model is good only whenh is sufficiently small.
We shall introduce two methods that include this aspect in the determination
of a steph, which is a descent direction and which can be used withα= 1
in Algorithm 2.4.

In a trust region methodwe assume that we know a positive number∆ such
that the model is sufficiently accurate inside a ball with radius∆, centered
atx, and determine the step as

h = htr ≡ argmin‖h‖≤∆{L(h)}. (2.15)

In adamped methodthe step is determined as

h = hdm ≡ argminh{L(h) + 1
2 µ h>h}, (2.16)

where thedamping parameterµ ≥ 0. The term1
2 µh>h = 1

2 µ‖h‖2 is seen
to penalize large steps.

The central part of Algorithm 2.4 based on one of these methods has the
form

Computeh by (2.15) or (2.16)
if F (x+h) < F (x)

x := x + h
Update∆ or µ

(2.17)

This corresponds toα= 1 if the steph satisfies the descending condition
(2.1). Otherwise,α= 0, ie we do not move.2) However, we are not stuck

2) There are versions of these methods that include a proper line search to find a point
x+αh with smallerF -value, and information gathered during the line search is used in
the updating of∆ orµ. For many problems such versions use fewer iteration steps but a
larger accumulated number of function values.
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at x (unlessx = x∗): by a proper modification of∆ or µ we aim at having
better luck in the next iteration step.

SinceL(h) is assumed to be a good approximation toF (x+h) for h suf-
ficiently small, the reason why the step failed is thath was too large, and
should be reduced. Further, if the step is accepted, it may be possible to use
a larger step from the new iterate and thereby reduce the number of steps
needed before we reachx∗.

The quality of the model with the computed step can be evaluated by the
so-calledgain ratio

% =
F (x)− F (x+h)
L(0)− L(h)

, (2.18)

ie the ratio between the actual and predicted decrease in function value. By
construction the denominator is positive, and the numerator is negative if
the step was not downhill – it was too large and should be reduced.

With a trust region method we monitor the step length by the size of the
radius∆. The following updating strategy is widely used,

if % < 0.25
∆ := ∆/2

elseif % > 0.75
∆ := max{∆, 3 ∗ ‖h‖}

(2.19)

Thus, if% < 1
4
, we decide to use smaller steps, while% > 3

4
indicates that it

may be possible to use larger steps. A trust region algorithm is not sensitive
to minor changes in the thresholds0.25 and0.75, the divisorp1 = 2 or the
factorp2 = 3, but it is important that the numbersp1 andp2 are chosen so
that the∆-values cannot oscillate.

In a damped method a small value of% indicates that we should increase
the damping factor and thereby increase the penalty on large steps. A large
value of% indicates thatL(h) is a good approximation toF (x+h) for the
computedh, and the damping may be reduced. A widely used strategy is
the following, which is similar to (2.19), and was was originally proposed
by Marquardt (1963),

2.4. Trust Region and Damped Methods 14

if % < 0.25
µ := µ ∗ 2

elseif % > 0.75
µ := µ/3

(2.20)

Again, the method is not sensitive to minor changes in the thresholds0.25
and0.75 or the numbersp1 = 2 andp2 = 3, but it is important that the num-
bersp1 andp2 are chosen so that theµ-values cannot oscillate. Experience
shows that the discontinuous changes across the thresholds0.25 and0.75
can give rise to a “flutter” (illustrated in Example 3.7 on page 27) that can
slow down convergence, and we demonstrated in Nielsen (1999) that the
following strategy in general outperforms (2.20),

if % > 0
µ := µ ∗max{ 1

3
, 1− (2%− 1)3}; ν := 2

else
µ := µ ∗ ν; ν := 2 ∗ ν

(2.21)

The factorν is initialized toν= 2. Notice that a series of consecutive fail-
ures results in rapidly increasingµ-values. The two updating formulas are
illustrated below.

0 10.25 0.75

1

µ
new

/µ

%

Figure 2.2.Updating ofµ by (2.21) withν= 2 (full line)
Marquardt’s strategy(2.20)(dasheded line).

2.4.1. Computation of the step.In a damped method the step is computed
as a stationary point for the function

ψµ(h) = L(h) + 1
2 µ h>h ,



15 2. DESCENTMETHODS

This means thathdm is a solution to

ψ′µ(h) = L ′(h) + µh = 0 ,

and from the definition ofL(h) in (2.14) we see that this is equivalent to

(B + µI)hdm = −c , (2.22)

whereI is the identity matrix. Ifµ is sufficiently large, the symmetric matrix
B+µI is positive definite (shown in Appendix A), and then it follows from
Theorem 1.8 thathdm is a minimizer forL.

Example 2.1. In a damped Newton methodthe modelL(h) is given byc = F ′(x)
andB = F ′′(x), and (2.22) takes the form

(F ′′(x) + µI)hdn = −F ′(x) .

hdn is the so-calleddamped Newton step.If µ is very large, then

hdn ' −
1

µ
F ′(x) ,

ie a short step in a direction close to the steepest descent direction. On the other
hand, ifµ is very small, thenhdn is close to the Newton stephn. Thus, we can
think of the damped Newton method as a hybrid between the steepest descent
method and the Newton method.

We return to damped methods in Section 3.2.

In a trust region method the stephtr is the solution to aconstrained opti-
mization problem,

minimize L(h)

subject to h>h ≤ ∆2 .
(2.23)

It is outside the scope of this booklet to discuss this problem in any detail
(see Madsen et al (2004) or Section 4.1 in Nocedal and Wright (1999). We
just want to mention a few properties.

If the matrix B in (2.14) is positive definite, then the unconstrained mini-
mizer ofL is the solution to

2.4. Trust Region and Damped Methods 16

Bh = −c ,

and if this is sufficiently small (if it satisfiesh>h ≤ ∆2), then this is the
desired step,htr. Otherwise, the constraint is active, and the problem is
more complicated. With a similar argument as we used on page 11, we can
see that we do not have to compute the true solution to (2.23), and in Sec-
tions 3.3 and 3.4 we present two ways of computing an approximation to
htr.

Finally, we present two similarities between a damped method and a trust
region method in the case whereB is positive definite: In case the uncon-
strained minimizer is outside the trust region, it can be shown (Theorem
2.11 in Madsen et al (2004)) that there exists aλ> 0 such that

Bhtr + c = −λhtr . (2.24a)

By reordering this equation and comparing it with (2.22) we see thathtr is
identical with the damped stephdm computed with the damping parameter
µ=λ. On the other hand, one can also show (Theorem 5.11 in Frandsen et
al (2004)) that if we computehdm for a givenµ≥ 0, then

hdm = argmin‖h‖≤‖hdm‖{L(h)} , (2.24b)

ie hdm is equal tohtr corresponding to the trust region radius∆ = ‖hdm‖.
Thus, the two classes of methods are closely related, but there is not a simple
formula for the connection between the∆- andµ-values that give the same
step.



3. NON-LINEAR LEAST SQUARESPROBLEMS

In the remainder of this lecture note we shall discuss methods for nonlinear
least squares problems. Given a vector functionf : IRn 7→ IRm with m≥n.
We want to minimize‖f(x)‖, or equivalently to find

x∗ = argminx{F (x)} , (3.1a)

where

F (x) = 1
2

m∑
i=1

(fi(x))2 = 1
2‖f(x)‖2 = 1

2 f(x)>f(x) . (3.1b)

Least squares problems can be solved by general optimization methods, but
we shall present special methods that are more efficient. In many cases they
achieve better than linear convergence, sometimes even quadratic conver-
gence, even though they do not need implementation of second derivatives.

In the description of the methods in this chapter we shall need formulas for
derivatives ofF : Provided thatf has continuous second partial derivatives,
we can write itsTaylor expansionas

f(x+h) = f(x) + J(x)h +O(‖h‖2) , (3.2a)

whereJ∈ IRm×n is theJacobian.This is a matrix containing the first partial
derivatives of the function components,

(J(x))ij =
∂fi
∂xj

(x) . (3.2b)

As regardsF : IRn 7→ IR, it follows from the first formulation in (3.1b),
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that1)

∂F

∂xj
(x) =

m∑
i=1

fi(x)
∂fi
∂xj

(x) . (3.3)

Thus, the gradient (1.4b) is

F ′(x) = J(x)>f(x) . (3.4a)

We shall also need the Hessian ofF . From (3.3) we see that the element in
position(j, k) is

∂2F

∂xj∂xk
(x) =

m∑
i=1

(
∂fi
∂xj

(x)
∂fi
∂xk

(x) + fi(x)
∂2fi

∂xj∂xk
(x)
)
,

showing that

F ′′(x) = J(x)>J(x) +
m∑
i=1

fi(x)f ′′i (x) . (3.4b)

Example 3.1. The simplest case of (3.1) is whenf(x) has the form

f(x) = b−Ax ,

where the vectorb∈ IRm and matrixA∈ IRm×n are given. We say that this is a
linear least squares problem. In this caseJ(x) = −A for all x, and from (3.4a)
we see that

F ′(x) = −A>(b−Ax) .

This is zero forx∗ determined as the solution to the so-callednormal equations,

(A>A)x∗ = A>b . (3.5)

The problem can be written in the form

Ax∗ ' b ,

and alternatively we can solve it viaorthogonal transformation: Find an orthog-
onal matrixQ such that

1) If we had not used the factor1
2

in the definition (3.1b), we would have got an annoying
factor of 2 in a lot of expressions.
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Q>A =

[
R
0

]
,

whereR∈ IRn×n is upper triangular. The solution is found by back substitution
in the system2)

Rx∗ = (Q>b)1: n .

This method is more accurate than the solution via the normal equations.

In MATLAB suppose that the arraysA andb hold the matrixA and vectorb, re-
spectively. Then the commandA\b returns the least squares solution computed
via orthogonal transformation.

As the title of the booklet suggests, we assume thatf is nonlinear, and shall not
discuss linear problems in detail. We refer to Chapter 2 in Madsen and Nielsen
(2002) or Section 5.2 in Golub and Van Loan (1996).

Example 3.2. In Example 1.1 we saw a nonlinear least squares problem arising
from data fitting. Another application is in the solution of nonlinear systems of
equations,

f(x∗) = 0 , where f : IRn 7→ IRn .

We can useNewton-Raphson’s method:From an initial guessx0 we compute
x1,x2, . . . by the following algorithm, which is based on seekingh so that
f(x+h) = 0 and ignoring the termO(‖h‖2) in (3.2a),

Solve J(xk)hk = −f(xk) for hk

xk+1 = xk + hk .
(3.6)

Here, the JacobianJ is given by (3.2b). IfJ(x∗) is nonsingular, then the
method has quadratic final convergence, ie ifdk = ‖xk−x∗‖ is small, then
‖xk+1−x∗‖ = O(d2

k). However, ifxk is far fromx∗, then we risk to get even
further away.

We can reformulate the problem in a way that enables us to use all the “tools” that
we are going to present in this chapter: A solution of (3.6) is a global minimizer
of the functionF defined by (3.1),

F (x) = 1
2
‖f(x)‖2 ,

2) An expression likeup: q is used to denote the subvector with elementsui, i= p, . . . , q.
Theith row andjth column of a matrixA is denotedAi,: andA: ,j , respectively.
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sinceF (x∗) = 0 andF (x)> 0 if f(x) 6= 0. We may eg replace the updating of
the approximate solution in (3.6) by

xk+1 = xk + αkhk ,

whereαk is found by line search applied to the functionϕ(α) = F (xk+αhk).

As a specific example we shall consider the following problem, taken from Pow-
ell (1970),

f(x) =

[
x1

10x1
x1+0.1

+ 2x2
2

]
,

with x∗= 0 as the only solution. The Jacobian is

J(x) =

[
1 0

(x1+0.1)−2 4x2

]
,

which is singular at the solution.

If we takex0 = [ 3, 1 ]> and use the above algorithm with exact line search,
then the iterates converge toxc ' [ 1.8016, 0 ]>, which isnot a solution. On
the other hand, it is easily seen that the iterates given by Algorithm (3.6) are
xk = [0, yk]> with yk+1 = 1

2
yk, ie we have linear convergence to the solution.

In a number of examples we shall return to this problem to see how different
methods handle it.

3.1. The Gauss–Newton Method
This method is the basis of the very efficient methods we will describe in the
next sections. It is based on implemented first derivatives of the components
of the vector function. In special cases it can give quadratic convergence as
the Newton-method does for general optimization, see Frandsen et al (2004).

The Gauss–Newton method is based on a linear approximation to the com-
ponents off (a linear modelof f ) in the neighbourhood ofx : For small‖h‖
we see from the Taylor expansion (3.2) that

f(x+h) ' `(h) ≡ f(x) + J(x)h . (3.7a)

Inserting this in the definition (3.1) ofF we see that
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F (x+h) ' L(h) ≡ 1
2`(h)>`(h)

= 1
2 f>f + h>J>f + 1

2h>J>Jh

= F (x) + h>J>f + 1
2h>J>Jh (3.7b)

(with f = f(x) andJ = J(x)). TheGauss–Newton stephgn minimizesL(h),

hgn = argminh{L(h)} .
It is easily seen that the gradient and the Hessian ofL are

L ′(h) = J>f + J>Jh, L ′′(h) = J>J . (3.8)

Comparison with (3.4a) shows thatL ′(0) = F ′(x). Further, we see that the
matrixL ′′(h) is independent ofh. It is symmetric and ifJ hasfull rank, ie
if the columns are linearly independent, thenL ′′(h) is also positive definite,
cf Appendix A. This implies thatL(h) has a unique minimizer, which can
be found by solving

(J>J)hgn = −J>f . (3.9)

This is a descent direction forF since

hgn
>F ′(x) = hgn

>(J>f) = −hgn
>(J>J)hgn < 0 . (3.10)

Thus, we can usehgn for hd in Algorithm 2.4. The typical step is

Solve (J>J)hgn = −J>f

x := x + αhgn
(3.11)

whereα is found by line search. The classical Gauss-Newton method uses
α= 1 in all steps. The method with line search can be shown to have guar-
anteed convergence, provided that

a) {x | F (x) ≤ F (x0)} is bounded, and

b) the JacobianJ(x) has full rank in all steps.

In chapter 2 we saw that Newton’s method for optimization has quadratic
convergence. This is normally not the case with the Gauss-Newton method.
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To see this, we compare the search directions used in the two methods,

F ′′(x)hn = −F ′(x) and L ′′(h)hgn = −L ′(0) .

We already remarked at (3.8) that the two right-hand sides are identical, but
from (3.4b) and (3.8) we see that the coefficient matrices differ:

F ′′(x) = L ′′(h) +
m∑
i=1

fi(x)f ′′i (x) . (3.12)

Therefore, iff(x∗) = 0, thenL ′′(h)'F ′′(x) for x close tox∗, and we get
quadratic convergence also with the Gauss-Newton method. We can expect
superlinear convergence if the functions{fi} have small curvatures or if the
{|fi(x∗)|} are small, but in general we must expect linear convergence. It is
remarkable that the value ofF (x∗) controls the convergence speed.

Example 3.3. Consider the simple problem withn= 1,m= 2 given by

f(x) =

[
x+ 1

λx2 + x− 1

]
. F (x) = 1

2
(x+1)2 + 1

2
(λx2+x−1)2 .

It follows that

F ′(x) = 2λ2x3 + 3λx2 − 2(λ−1)x ,

sox= 0 is a stationary point forF . Now,

F ′′(x) = 6λ2x2 + 6λx− 2(λ−1) .

This shows that ifλ< 1, thenF ′′(0)> 0, sox= 0 is a local minimizer – actu-
ally, it is the global minimizer.

The Jacobian is

J(x) =

[
1

2λx+ 1

]
,

and the classical Gauss-Newton method fromxk gives

xk+1 = xk −
2λ2x3

k + 3λx2
k − 2(λ−1)xk

2 + 4λxk + 4λ2x2
k

.

Now, if λ 6= 0 andxk is close to zero, then

xk+1 = xk + (λ−1)xk +O(x2
k) = λxk +O(x2

k) .
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Thus, if|λ|< 1, we have linear convergence. Ifλ<−1, then the classical Gauss-
Newton method cannot find the minimizer. Eg withλ= − 2 andx0 = 0.1 we
get a seemingly chaotic behaviour of the iterates,

k xk
0 0.1000
1 −0.3029
2 0.1368
3 −0.4680
...

...

Finally, if λ= 0, then

xk+1 = xk − xk = 0 ,

ie we find the solution in one step. The reason is that in this casef is a linear
function.

Example 3.4. For the data fitting problem from Example 1.1 theith row of the
Jacobian matrix is

J(x)i,: =
[
−x3tie

x1ti −x4tie
x2ti −ex1ti −ex2ti

]
.

If the problem isconsistent(ie f(x∗) = 0), then the Gauss-Newton method with
line search will have quadratic final convergence, provided thatx∗1 is signif-
icantly different fromx∗2. If x∗1 =x∗2, then rank(J(x∗))≤ 2, and the Gauss-
Newton method fails.

If one or more measurement errors are large, thenf(x∗) has some large compo-
nents, and this may slow down the convergence.

In MATLAB we can give a very compact function for computingf andJ: Sup-
pose thatx holds the current iterate and that them×2 arrayty holds the coordi-
nates of the data points. The following function returnsf andJ containingf(x)
andJ(x), respectively.

function [f, J] = fitexp(x, ty)
t = ty(:,1); y = ty(:,2);
E = exp(t * [x(1), x(2)]);
f = y - E*[x(3); x(4)];
J = -[x(3)*t.*E(:,1), x(4)*t.*E(:,2), E];
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Example 3.5. Consider the problem from Example 3.2,f(x∗) = 0 with f : IRn 7→
IRn. If we use Newton-Raphson’s method to solve this problem, the typical
iteration step is

Solve J(x)hnr = −f(x); x := x + hnr .

The Gauss-Newton method applied to the minimization ofF (x) = 1
2
f(x)>f(x)

has the typical step

Solve (J(x)>J(x))hgn = −J(x)>f(x); x := x + hgn .

Note, thatJ(x) is a square matrix, and we assume that it is nonsingular. Then
(J(x)>)−1 exists, and it follows thathgn = hnr. Therefore, when applied to
Powell’s problem from Example 3.2, the Gauss-Newton method will have the
same troubles as discussed for Newton-Raphson’s method in that example.

These examples show that the Gauss-Newton method may fail, both with
and without a line search. Still, in many applications it gives quite good
performance, though it normally only has linear convergence as opposed to
the quadratic convergence from Newton’s method with implemented second
derivatives.

In Sections 3.2 and 3.3 we give two methods with superior global perfor-
mance, and in Section 3.4 we give modifications to the first method so that
we achieve superlinear final convergence.

3.2. The Levenberg–Marquardt Method
Levenberg (1944) and later Marquardt (1963) suggested to use adamped
Gauss-Newton method,cf Section 2.4. The stephlm is defined by the fol-
lowing modification to (3.9),

(J>J + µI)hlm = −g with g = J>f andµ≥ 0 . (3.13)

Here,J = J(x) andf = f(x). The damping parameterµ has several effects:

a) For allµ> 0 the coefficient matrix is positive definite, and this ensures
thathlm is a descent direction, cf (3.10).
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b) For large values ofµ we get

hlm ' −
1
µ

g = − 1
µ

F ′(x) ,

ie a short step in the steepest descent direction. This is good if the
current iterate is far from the solution.

c) If µ is very small, thenhlm'hgn, which is a good step in the final
stages of the iteration, whenx is close tox∗. If F (x∗) = 0 (or very
small), then we can get (almost) quadratic final convergence.

Thus, the damping parameter influences both the direction and the size of
the step, and this leads us to make a methodwithout a specific line search.
The choice of initialµ-value should be related to the size of the elements in
A0 = J(x0)>J(x0), eg by letting

µ0 = τ ·maxi{a(0)
ii } , (3.14)

whereτ is chosen by the user.3) During iteration the size ofµ can be up-
dated as described in Section 2.4. The updating is controlled by thegain
ratio

% =
F (x)− F (x+hlm)
L(0)− L(hlm)

,

where the denominator is the gain predicted by the linear model (3.7b),

L(0)− L(hlm) =−hlm
>J>f − 1

2hlm
>J>Jhlm

=− 1
2hlm

>(2g + (J>J + µI− µI)hlm
)

= 1
2hlm

>(µhlm − g) .

Note that bothhlm
>hlm and−hlm

>g are positive, soL(0)−L(hlm) is guar-
anteed to be positive.

A large value of% indicates thatL(hlm) is a good approximation to
F (x+hlm), and we can decreaseµ so that the next Levenberg-Marquardt

3) The algorithm is not very sensitive to the choice ofτ , but as a rule of thumb, one should
use a small value, egτ = 10−6 if x0 is believed to be a good approximation tox∗.
Otherwise, useτ = 10−3 or evenτ = 1.
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step is closer to the Gauss-Newton step. If% is small (maybe even negative),
thenL(hlm) is a poor approximation, and we should increaseµ with the
twofold aim of getting closer to the steepest descent directionand reducing
the step length. These goals can be met in different ways, see page 14 and
Example 3.7 below.

Thestopping criteriafor the algorithm should reflect that at a global mini-
mizer we haveF ′(x∗) = g(x∗) = 0, so we can use

‖g‖∞ ≤ ε1 , (3.15a)

whereε1 is a small, positive number, chosen by the user. Another relevant
criterion is to stop if the change inx is small,

‖xnew− x‖ ≤ ε2(‖x‖+ ε2) . (3.15b)

This expression gives a gradual change from relative step sizeε2 when‖x‖
is large to absolute step sizeε2

2 if x is close to0. Finally, as in all iterative
processes we need a safeguard against an infinite loop,

k ≥ kmax . (3.15c)

Also ε2 andkmax are chosen by the user.

The last two criteria come into effect eg ifε1 is chosen so small that effects
of rounding errors have large influence. This will typically reveal itself in
a poor accordance between the actual gain inF and the gain predicted by
the linear model (3.7b), and will result inµ being augmented in every step.
The strategy (2.21) for augmentingµ implies that in this caseµ grows fast,
resulting in small‖hlm‖, and the process will be stopped by (3.15b).

The algorithm is summarized below.

Example 3.6. By comparing (3.9) and the normal equations (3.5) we see thathgn

is simply the least squares solution to the linear problem

f(x) + J(x)h ' 0 .

Similarly, the L-M equations (3.13) are the normal equations for the linear prob-
lem
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Algorithm 3.16. Levenberg–Marquardt method

begin
k := 0; ν := 2; x := x0

A := J(x)>J(x); g := J(x)>f(x)
found:= (‖g‖∞ ≤ ε1); µ := τ ∗max{aii}
while (not found) and (k <kmax)
k := k+1; Solve (A + µI)hlm = −g
if ‖hlm‖ ≤ ε2(‖x‖+ ε2)

found:= true
else

xnew := x + hlm

% := (F (x)− F (xnew))/(L(0)− L(hlm))
if % > 0 {step acceptable}

x := xnew

A := J(x)>J(x); g := J(x)>f(x)
found:= (‖g‖∞ ≤ ε1)
µ := µ ∗max{ 1

3
, 1− (2%− 1)3}; ν := 2

else
µ := µ ∗ ν; ν := 2 ∗ ν

end

[
f(x)
0

]
+

[
J(x)√
µI

]
h ' 0 .

As mentioned in Example 3.1, the most accurate solution is found via orthogonal
transformation. However, the solutionhlm is just a step in an iterative process,
and needs not be computed very accurately, and since the solution via the normal
equations is “cheaper”, this method is normally employed.

Example 3.7. We have used Algorithm 3.16 on the data fitting problem from Ex-
amples 1.1 and 3.4. Figure 1.1 indicates that bothx1 andx2 are negative and that
M(x∗, 0)' 0. These conditions are satisfied byx0 = [−1, −2, 1, −1]>. Fur-
ther, we usedτ = 10−3 in the expression (3.14) forµ0 and the stopping criteria
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given by (3.15) withε1 = ε2 = 10−8, kmax = 200. The algorithm stopped after
62 iteration steps withx ' [−4, −5, 4, −4]>. The performance is illustrated
below; note the logarithmic ordinate axis.

This problem is not consistent, so we could expect linear final convergence. The
last 7 iteration steps indicate a much better (superlinear) convergence. The ex-
planation is, that thef ′′i (x) are slowly varying functions ofti, and thefi(x∗)
have “random” sign, so that the contributions to the “forgotten term” in (3.12)
almost cancel out. Such a situation occurs in many data fitting applications.

0 10 20 30 40 50 60 70
10

−12

10
−8

10
−4

10
0

F(x)
||g||
µ

Figure 3.2a.The L-M method applied to the
fitting problem from Example 1.1.

For comparison, Figure 3.2b shows the performance with the updating strategy
(2.20). From step 5 to step 68 we see that each decrease inµ is immediately
followed by an increase, and the norm of the gradient has a rugged behaviour.
This slows down the convergence, but the final stage is as in Figure 3.2a.
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µ

Figure 3.2b. Performance with updating strategy (2.20).

Example 3.8. Figure 3.3 illustrates the performance of Algorithm 3.16 applied to
Powell’s problem from Examples 3.2 and 3.5. The starting point isx0 = [ 3, 1 ]>,
µ0 given byτ = 1 in (3.14), and we useε1 = ε2 = 10−15, kmax = 100 in the
stopping criteria (3.15).
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0 10 20 30 40 50 60 70 80 90 100
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µ

Figure 3.3. The L-M method applied to Powell’s problem.

The iteration seems to stall between steps 22 and 30. This as an effect of
the (almost) singular Jacobian matrix. After that there seems to be linear
convergence. The iteration is stopped by the “safeguard” at the pointx =
[ -3.82e-08 , -1.38e-03 ]>. This is a better approximation tox∗= 0 than we
found in Example 3.2, but we want to be able to do even better; see Examples
3.10 and 3.17.

3.3. Powell’s Dog Leg Method
As the Levenberg–Marquardt method, this method works with combinations
of the Gauss–Newton and the steepest descent directions. Now, however
controlled explicitly via the radius of atrust region, cf Section 2.4. Powell’s
name is connected to the algorithm because he proposed how to find an
approximation tohtr, defined by (2.23).

Givenf : IRn 7→ IRm. At the current iteratex the Gauss–Newton stephgn is
the least squares solution to the linear system

J(x)h ' −f(x) . (3.17)

It can be computed by solving the normal equations(
J(x)>J(x)

)
hgn = −J(x)>f(x) . (3.18a)

The steepest descent direction is given by

hsd = −g = −J(x)>f(x) . (3.18b)

This is a direction,not a step, and to see how far we should go, we look at
the linear model
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f(x+αhsd) ' f(x) + αJ(x)hsd

⇓
F (x+αhsd) ' 1

2‖f(x) + αJ(x)hsd‖2

= F (x) + αhsd
>J(x)>f(x) + 1

2α
2‖J(x)hsd‖2 .

This function ofα is minimal for

α = − hsd
>J(x)>f(x)
‖J(x)hsd‖2

=
‖g‖2
‖J(x)g‖2 . (3.19)

Now we have two candidates for the step to take from the current pointx:
a =αhsd andb = hgn. Powell suggested to use the following strategy for
choosing the step, when the trust region has radius∆. The last case in the
strategy is illustrated in Figure 3.4.

if ‖hgn‖ ≤ ∆
hdl := hgn

elseif ‖αhsd‖ ≥ ∆
hdl := (∆/‖hsd‖)hsd

else
hdl := αhsd + β(hgn− αhsd)

with β chosen so that‖hdl‖ = ∆ .

(3.20a)

∆
a = α h

sd

b = h
GN

h
dl

x

Figure 3.4.Trust region and Dog Leg step.4)

4) The nameDog Legis taken from golf: The fairway at a “dog leg hole” has a shape as
the line fromx (the tee point) via the end point ofa to the end point ofhdl (the hole).
Powell is a keen golfer!
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With a andb as defined above, andc = a>(b−a) we can write

ψ(β) ≡ ‖a + β(b−a)‖2 −∆2 = ‖b−a‖2β2 + 2cβ + ‖a‖2 −∆2 .

We seek a root for this second degree polynomial, and note thatψ→ +∞
for β→−∞; ψ(0) = ‖a‖2−∆2 < 0; ψ(1) = ‖hgn‖2−∆2 > 0. Thus,ψ
has one negative root and one root in]0, 1[. We seek the latter, and the most
accurate computation of it is given by

if c ≤ 0
β =

(
−c+

√
c2 + ‖b−a‖2(∆2 − ‖a‖2)

)/
‖b−a‖2

else

β =
(
∆2 − ‖a‖2

) /(
c+

√
c2 + ‖b−a‖2(∆2 − ‖a‖2)

) (3.20b)

As in the L-M method we can use the gain ratio

% = (F (x)− F (x+hdl))
/

(L(0)− L(hdl))

to monitor the iteration. Again,L is the linear model

L(h) = 1
2‖f(x) + J(x)h‖2 .

In the L-M method we used% to control the size of the damping parameter.
Here, we use it to control the radius∆ of the trust region. A large value of
% indicates that the linear model is good. We can increase∆ and thereby
take longer steps, and they will be closer to the Gauss-Newton direction. If
% is small (maybe even negative) then we reduce∆, implying smaller steps,
closer to the steepest descent direction. Below we summarize the algorithm.

We have the following remarks.

1◦ Initialization. x0 and∆0 should be supplied by the user.

2◦ We use the stopping criteria (3.15) supplemented with
‖f(x)‖∞≤ ε3, reflecting thatf(x∗) = 0 in case ofm=n, ie a nonlinear
system of equations.

3◦ If m=n, then “'” is replaced by “=”, cf (3.6), and we do not use the
detour around the normal equations (3.18a); see Example 3.9.
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Algorithm 3.21. Dog Leg Method

begin
k := 0; x := x0; ∆ := ∆0; g := J(x)>f(x) {1◦}
found:= (‖f(x)‖∞≤ ε3) or (‖g‖∞≤ ε1) {2◦}
while (not found) and (k <kmax)
k := k+1; Computeα by (3.19)
hsd := −αg; Solve J(x)hgn ' −f(x) {3◦}
Computehdl by (3.20)
if ‖hdl‖ ≤ ε2(‖x‖+ ε2)

found:= true
else

xnew := x + hdl

% := (F (x)− F (xnew))/(L(0)− L(hdl)) {4◦}
if % > 0

x := xnew; g := J(x)>f(x)
found:= (‖f(x)‖∞≤ ε3) or (‖g‖∞≤ ε1)

if % > 0.75 {5◦}
∆ := max{∆, 3∗‖hdl‖}

elseif % < 0.25
∆ := ∆/2; found:= (∆≤ ε2(‖x‖+ ε2)) {6◦}

end

4◦ Corresponding to the three cases in (3.20a) we can show that

L(0)−L(hdl) =


F (x) if hdl = hgn

∆(2‖αg‖ −∆)
2α

if hdl =
−∆
‖g‖ g

1
2α(1−β)2‖g‖2 + β(2−β)F (x) otherwise

5◦ Strategy (2.19) is used to update the trust region radius.

6◦ Extra stopping criterion. If∆ ≤ ε2(‖x‖+ ε2), then (3.15b) will surely
be satisfied in the next step.
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Example 3.9. In Example 3.6 we briefly discussed the computation of the step
hlm and argued that we might as well compute it via the normal equations for-
mulation (3.13). Provided thatµ is not very small, the matrix is reasonably well
conditioned, and there will be no excessive effects of rounding errors.

The Dog Leg method is intended perform well also on nonlinear systems of
equations, ie where (3.17) is a square system of linear equations

J(x)h = −f(x) ,

with the solutionh = hnr, the Newton-Raphson step, cf Example 3.2. The Ja-
cobianJ may be ill-conditioned (even singular), in which case rounding errors
tend to dominate the solution. This problem is worsened if we use (3.18a) to
computehgn.

In the implementationdogleg in immoptibox the solution to (3.17) is com-
puted with respect to these problems. If the columns ofJ(x) are not significantly
linearly independent, then the least squares solutionh is not unique, andhgn is
computed as theh with minimum norm. Some details of this computation are
given in Appendix B.

Example 3.10. Figure 3.5 illustrates the performance of the Dog Leg method
applied to Powell’s problem from Examples 3.2 and 3.8 with starting point
x0 = [ 3, 1 ]>, ∆0 = 1 and the stopping criteria given byε1 = ε2 = 10−15,
ε3 = 10−20, kmax = 100.
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Figure 3.5. Dog Leg method applied to Powell’s problem.

The iteration stopped after 37 steps because of a small gradient, and returnedx =
[−2.41·10−35, 1.26·10−9 ]>, which is quite a good approximation tox∗= 0.
As in Figure 3.3 we see that the ultimate convergence is linear (caused by the
singularJ(x∗)), but considerably faster than with the Marquardt method.
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Example 3.11. We have used Algorithm 3.21 on the data fitting problem
from Examples 1.1, 3.4 and 3.7. As in Example 3.7 we use the starting point
x0 = [−1, −2, 1, −1]>, and take∆0 = 1 and the stopping criteria given by
ε1 = ε2 = ε3 = 10−8, kmax = 200. The algorithm stopped after 30 iteration
steps withx ' [−4, −5, 4, −4]>. The performance is illustrated below. As in
Figure 3.3 we note a very fast ultimate rate of convergence.
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Figure 3.6. The Dog Leg method applied to the
fitting problem from Example 1.1.

The last two examples seem to indicate that the Dog Leg method is consid-
erably better than the Levenberg-Marquardt method. This is true when the
least squares problem arises from a system of nonlinear equations. The Dog
Leg method is presently considered as the best method for solving systems
of nonlinear equations.

For general least squares problems the Dog Leg method has the same dis-
advantages as the L-M method: the final convergence can be expected to be
linear (and slow) ifF (x∗) 6= 0. For a given problem and given starting guess
x0 it is not possible to say beforehand which of the two methods will be the
faster.

3.4. A Hybrid Method: L–M and Quasi–Newton
In 1988 Madsen presented a hybrid method which combines the L–M
method (quadratic convergence ifF (x∗) = 0, linear convergence otherwise)
with a Quasi5)–Newton method, which gives superlinear convergence, even

5) From Latin: “quasi” = “almost”. See Chapter 5 in Frandsen et al (2004) for a general
introduction to Quasi–Newton methods.
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if F (x∗) 6= 0. The iteration starts with a series of steps with the L-M method.
If the performance indicates thatF (x∗) is significantly nonzero, then we
switch to the Quasi–Newton method for better performance. It may happen
that we get an indication that it is better to switch back to the L–M method,
so there is also a mechanism for that.

The switch to the Quasi–Newton method is made if the condition

‖F ′(x)‖∞ < 0.02 ∗ F (x) (3.22)

is satisfied in three consecutive, successful iteration steps. This is interpreted
as an indication that we are approaching anx∗ with F ′(x∗) = 0 andF (x∗)
significantly nonzero. As discussed in connection with (3.12), this can lead
to slow, linear convergence.

The Quasi–Newton method is based on having an approximationB to the
HessianF ′′(x) at the current iteratex, and the stephqn is found by solving

Bhqn = −F ′(x) . (3.23)

This is an approximation to the Newton equation (2.9a).

The approximationB is updated by the BFGS strategy, cf Section 5.10 in
Frandsen et al (2004): EveryB in the series of approximation matrices is
symmetric (as anyF ′′(x)) and positive definite. This ensures thathqn is
“downhill”, cf (2.10). We start with the symmetric, positive definite matrix
B0 = I, and the BFGS update consists of a rank 2 matrix to be added to
the currentB. Madsen (1988) uses the following version, advocated by
Al-Baali and Fletcher (1985),

h := xnew− x; y := Jnew
>Jnewh + (Jnew− J)>f(xnew)

if h>y > 0

v := Bh; B := B +
( 1
h>y

y
)
y> −

( 1
h>v

v
)
v>

(3.24)

with J = J(x), Jnew = J(xnew). As mentioned, the currentB is positive
definite, and it is changed only, ifh>y> 0. In this case it can be shown that
also the newB is positive definite.
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The Quasi–Newton method is not robust in the global stage of the itera-
tion; it is not guaranteed to be descenting. At the solutionx∗ we have
F ′(x∗) = 0, and good final convergence is indicated by rapidly decreasing
values of‖F ′(x)‖. If these norm values do not decrease rapidly enough,
then we switch back to the L–M method.

The algorithm is summarized below. It calls the auxiliary functionsLMstep
andQNstep, implementing the two methods.

Algorithm 3.25. A Hybrid Method

begin
k := 0; x := x0; µ := µ0; B := I {1◦}
found:= (‖F ′(x)‖∞ ≤ ε1); method:= L-M
while (not found) and (k <kmax)
k := k+1
casemethodof

L-M:
[xnew, found,better,method, . . .] := LMstep(x, . . .) {2◦}

Q-N:
[xnew, found,better,method, . . .] := QNstep(x,B, . . .) {2◦}

UpdateB by (3.24) {3◦}
if better

x := xnew

end

We have the following remarks:

1◦ Initialization. µ0 can be found by (3.14). The stopping criteria are
given by (3.15).

2◦ The dots indicate that we also transfer current values off andJ etc, so
that we do not have to recompute them for the samex.

3◦ Notice that both L-M and Quasi-Newton steps contribute information
for the approximation of the Hessian matrix.

The two auxiliary functions are given below,



37 3. LEAST SQUARESPROBLEMS

Function 3.26. Levenberg–Marquardt step

[xnew, found,better,method, . . .] := LMstep(x, . . .)

begin
xnew := x; method:= L-M
Solve (J(x)>J(x) + µI)hlm = −F ′(x)
if ‖hlm‖ ≤ ε2(‖x‖+ ε2)

found:= true
else

xnew := x + hlm

% := (F (x)− F (xnew))/(L(0)− L(hlm)) {4◦}
if % > 0

better:= true; found:= ( ‖F ′(xnew)‖∞ ≤ ε1 )
if ‖F ′(xnew)‖∞ < 0.02 ∗ F (xnew) {5◦}

count:= count+1
if count= 3 {6◦}

method:= Q-N
else

count:= 0
else

count:= 0; better:= false
end

We have the following remarks on the functionsLMstepandQNstep:

4◦ The gain ratio% is also used to updateµ as in Algorithm 3.16.

5◦ Indication that it might be time to switch method. The parametercount
is initialized to zero at the start of Algorithm 3.25.

6◦ (3.22) was satisfied in three consecutive iteration steps, all of which had
%> 0, ie x was changed in each of these steps.
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Function 3.27. Quasi–Newton step

[xnew, found,better,method, . . .] := QNstep(x,B . . .)

begin
xnew := x; method:= Q-N; better:= false
Solve Bhqn = −F ′(x)
if ‖hqn‖ ≤ ε2(‖x‖+ ε2)

found:= true
else

if ‖hqn‖ > ∆ {7◦}
hqn := (∆/‖hqn‖) ∗ hqn

xnew := x + hqn;
if ‖F ′(xnew)‖∞ ≤ ε1 {8◦}

found:= true
else {9◦}

better:= (F (xnew) < F (x)) or (F (xnew) ≤ (1+δ)F (x)
and ‖F ′(xnew)‖∞ < ‖F ′(x)‖∞)

if ‖F ′(xnew)‖∞ ≥ ‖F ′(x)‖∞ {10◦}
method:= L-M

end

7◦ We combine the Quasi–Newton method with a trust region approach,
with a simple treatment of the case where the bound is active, cf
page 15f. At the switch from the L–M method∆ is initialized to
max{1.5ε2(‖x‖+ ε2), 1

5 ‖hlm‖}.

8◦ Not shown:∆ is updated by means of (2.19).

9◦ In this part of the algorithm we focus on gettingF ′ closer to zero, so
we accept a slight increase in the value ofF , egδ =

√
εM, whereεM

is the computer’s unit roundoff.

10◦ The gradients do not decrease fast enough.
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Example 3.12. Notice that in the updating formula (3.24) the computation of
y involves the productJ(x)>f(xnew). This implies that we have to store the
previous Jacobian matrix. Instead, we could use

y = F ′(xnew)− F ′(x) = gnew− g

in the updating formula, but Madsen (1988) found that (3.24) performs better.

The trust region approach in the Q–N step was not included in Madsen (1988),
but during the development of theimmoptibox functionnlshybrid this idea
was found to improve the performance. It reduced the number of times that a
Q–N step was tried in vain, ie the condition at10◦ immediately returned to the
L–M method.

Example 3.13. This hybrid method will not outperform Algorithm 3.16 on the
problems discussed in Examples 3.7 and 3.8. In the latter case (see Figure 3.3)
F (x)→0, and the switching condition at remark5◦ will never be satisfied. In the
former case,F (x∗) is significantly nonzero, but – as discussed in Example 3.7
– the simple L–M method has the desired superlinear final convergence.

To demonstrate the efficiency of Algorithm 3.25 we consider the modifiedRosen-
brock problem,cf Example 5.5 in Frandsen et al (1999), given byf : IR2 7→ IR3,

f(x) =

 10(x2 − x2
1)

1− x1

λ

 ,

where the parameterλ can be chosen. The minimizer ofF (x) = 1
2
f(x)>f(x)

is x∗ = [ 1, 1 ]> with F (x∗) = 1
2
λ2.

Below we give results for Algorithms 3.16 and 3.25 for some values ofλ. In all
cases we usex0 = [−1.2, 1 ]>, the initial damping parameterµ0 defined by
τ = 10−3 in (3.14), and(ε1, ε2, kmax) = (10−10, 10−14, 200) in the stopping
criteria (3.15).

In the first two casesλ is too small to really influence the iterations, but for the
largerλ-values we see that the hybrid method is much better than the simple
Levenberg–Marquardt algorithm – especially as regards the accuracy obtained.

In Figure 3.7 we illustrate the performance of the two algorithms in the case
λ= 104.
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Algorithm 3.16 Algorithm 3.25
λ its ‖x− x∗‖ its ‖x− x∗‖
0 17 2.78e-12 17 2.78e-12

10−5 17 2.78e-12 17 2.78e-12

1 24 1.69e-09 19 2.23e-14

102 23 5.87e-07 22 3.16e-12

104 23 2.37e-04 22 3.16e-12
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Figure 3.7.Levenberg–Marquardt’s method (left) and the hybrid method (right)

With the L–M method all steps after no. 15 fail to improve the objective function;
µ increases rapidly, and the stopping criterion (3.15b) is satisfied at step no. 23.

With the hybrid method there are several attempts to use the Quasi–Newton
method, starting at step nos. 5, 11 and 17. The last attempt is successful, and
after 22 steps the iteration is stopped by (3.15a).

3.5. A Secant Version of the L–M Method
The methods discussed in this booklet assume that the vector functionf is
differentiable, ie the Jacobian

J(x) =
[
∂fi
∂xj

]
exists. In many practical optimization problems it happens that we cannot
give formulae for the elements inJ, eg becausef is given by a “black box”.
The secant version of the L–M method is intended for problems of this type.
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The simplest remedy is to replaceJ(x) by a matrixB obtained bynumerical
differentiation: The(i, j)th element is approximated by the finite difference
approximation

∂fi
∂xj

(x) ' fi(x+δej)− fi(x)
δ

≡ bij , (3.28)

whereej is the unit vector in thejth coordinate direction andδ is an ap-
propriately small real number. With this strategy each iteratex needsn+1
evaluations off , and sinceδ is probably much smaller than the distance
‖x − x∗‖, we do not get much more information on theglobal behavior of
f than we would get from just evaluatingf(x). We want better efficiency.

Example 3.14. Letm=n= 1 and consider one nonlinear equation

f : IR 7→ IR. Find x̂ such thatf(x̂) = 0 .

For this problem we can write the Newton–Raphson algorithm (3.6) in the form

f(x+h) ' `(h) ≡ f(x) + f ′(x)h

solve the linear problem̀(h) = 0

xnew := x+ h

(3.29)

If we cannot implementf ′(x), then we can approximate it by

(f(x+δ)− f(x))/δ

with δ chosen appropriately small. More generally, we can replace (3.29) by

f(x+h) ' λ(h) ≡ f(x) + bh with b ' f ′(x)

solve the linear problemλ(h) = 0

xnew := x+ h

(3.30a)

Suppose that we already knowxprev andf(xprev). Then we can fix the factorb
(the approximation tof ′(x)) by requiring that

f(xprev) = λ(xprev− x) . (3.30b)

This gives b =
(
f(x)− f(xprev)

)
/(x − xprev) , and with this choice ofb

we recognize (3.30) as thesecant method, see eg pp 70f in Eld́en et al (2004).
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The main advantage of the secant method over an alternative finite difference
approximation to Newton–Raphson’s method is that we only need one function
evaluation per iteration step instead of two.

Now, consider the linear model (3.7a) forf : IRn 7→ IRm,

f(x+h) ' `(h) ≡ f(x) + J(x)h .

We will replace it by

f(x+h) ' λ(h) ≡ f(x) + Bh ,

whereB is the current approximation toJ(x). In the next iteration step we
needBnew so that

f(xnew+h) ' f(xnew) + Bnewh .

Especially, we want this model to hold with equality forh = x−xnew, ie

f(x) = f(xnew) + Bnew(x−xnew) . (3.31a)

This gives usm equations in them·n unknown elements ofBnew, so we
need more conditions. Broyden (1965) suggested to supplement (3.31a)
with

Bnewv = Bv for all v ⊥ (x−xnew) . (3.31b)

It is easy to verify that the conditions (3.31a–b) are satisfied by

Definition 3.32. Broyden’s Rank One Update

Bnew = B + uh>

where

h = xnew− x , u =
1

h>h
(f(xnew)− f(x)−Bh) .

Note that condition (3.31a) corresponds to the secant condition (3.30b) in
the casen= 1. We say that this approach is ageneralized secant method.

A brief sketch of the central part of Algorithm 3.16 with this modification
has the form
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solve (B>B + µI)hslm = −B>f(x)
xnew := x + hslm

UpdateB by (3.32)

Updateµ andx as in Algorithm 3.16

Powell has shown that if the set of vectorsx0,x1,x2, . . . converges to
x∗ and if the set of steps{hk ≡ xk−xk−1} satisfy the condition that
{hk−n+1, . . . ,hk} are linearly independent (they span the whole of IRn)
for eachk≥n, then the set of approximations{Bk} converges toJ(x∗),
irrespective of the choice ofB0.

In practice, however, it often happens that the previousn steps donot span
the whole of IRn, and there is a risk that after some iteration steps the current
B is such a poor approximation to the true Jacobian matrix, that−B>f(x)
is not even a downhill direction. In that casex will stay unchanged and
µ is increased. The approximationB is changed, but may still be a poor
approximation, leading to a further increase inµ, etc. Eventually the process
is stopped byhslm being so small that (3.15b) is satisfied, althoughx may
be far fromx∗.

A number of strategies have been proposed to overcome this problem, eg
to make occasional to recomputations ofB by finite differences. In Algo-
rithm 3.34 below we supplement the updatings determined by the course
of the iteration with a cyclic, coordinate-wise series of updatings: Leth
denote the current step, and letj be the current coordinate number. If the
angleθ betweenh andej is “large”, then we compute a finite difference
approximation to thejth column ofJ. More specific, this is done if

cos θ =
|h>ej |
‖h‖ · ‖ej‖

< γ ⇔ |hj | < γ‖h‖ . (3.33)

Experiments indicated that the (rather pessimistic) choiceγ= 0.8 gave good
performance. With this choice we can expect that each iteration step needs
(almost) two evaluations of the vector functionf .

Now we are ready to present the algorithm. The monitoring of the damping
parameterµ is as in Algorithm 3.16, and for the sake of clarity we omit it in
the presentation.
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Algorithm 3.34. Secant Version of the L–M Method

begin
k := 0; x := x0; B := B0; j := 0 {1◦}
g := B>f(x); found= ( ‖g‖∞ ≤ ε1 )
while (not found) and (k < kmax)
k := k+1; Solve(B>B + µI)h = −g
if ‖h‖ ≤ ε2(‖x‖+ ε2)

found:= true
else
j := mod(j, n)+1; if |hj | < 0.8‖h‖ {2◦}

UpdateB by (3.32), usingxnew = x + ηej {3◦}
xnew := x + h; UpdateB by (3.32)
if F (xnew) < F (x)

x := xnew

g := B>f(x); found:= ( ‖g‖∞≤ ε1 ) {4◦}
end

We have the following remarks:

1◦ Initialization. x0 is input andB0 is either input or it is computed by
(3.28). Also the parameters in the stopping criteria (3.15) and the step
δ to use in (3.28) are input values.

2◦ Cf (3.33). mod(j, n) is the remainder after division byn.

3◦ The stepη is given by
if xj = 0 then η := δ2 else η := δ|xj | .

4◦ Whereas the iteratex is updated only if the descending condition (2.1)
is satisfied, the approximationB is updated in every step. Therefore
the approximate gradientg may change also whenf(x) is unchanged.

Example 3.15. We have used Algorithm 3.34 on the modified Rosenbrock problem
from Example 3.13 withλ= 0. If we use the same starting point and stopping
criteria as in that example, and takeδ= 10−7 in the difference approximation
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(3.28), we find the solution after 29 iteration steps, involving a total of 53 evalu-
ations off(x). For comparison, the “true” L–M algorithm needs only 17 steps,
implying a total of 18 evaluations off(x) and J(x).

We have also used the secant algorithm on the data fitting problem from Exam-
ples 1.1, 3.7 and 3.11. Withδ= 10−7 and the same starting point and stopping
criteria as in Example 3.7 the iteration was stopped by (3.15a) after 94 steps,
involving a total of 192 evaluations off(x). For comparison, Algorithm 3.16
needs 62 iteration steps.

These two problems indicate that Algorithm 3.34 is robust, but they also illustrate
a general rule of thumb: If gradient information is available, it normally pays to
use it.

In many applications the numbersm andn are large, but each of the func-
tionsfi(x) depends only on a few of the elements inx. In that case most
of the ∂fi

∂xj
(x) are zero, and we say thatJ(x) is a sparse matrix. There

are efficient methods exploiting sparsity in the solution of the Levenberg–
Marquardt equation (3.13), see eg Nielsen (1997). In the updating formula
(3.32), however, normally all elements in the vectorsh andu are nonzero,
so thatBnew will be adense matrix. It is outside the scope of this booklet to
discuss how to cope with this; we refer to Gill et al (1984) and Toint (1987).

3.6. A Secant Version of the Dog Leg Method
The idea of using a secant approximation to the Jacobian can, of course,
also be used in connection with the Dog Leg Method from Section 3.3. In
this section we shall consider the special case ofm=n, ie in the solution of
nonlinear systems of equations. Broyden (1965) not only gave the formula
from Definition 3.32,

Bnew = B +
(

1
h>h

(y −Bh)
)

h>

where h = xnew− x , y = f(xnew)− f(x) ,
(3.35a)

for updating the approximate Jacobian. He also gave a formula for updating
an approximate inverse of the Jacobian,D ' J(x)−1. The formula is
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Dnew = D +
(

1
h>Dy

(h−Dy)
)

(h>D) , (3.35b)

whereh andy are defined in (3.35a).

With these matrices the steepest descent directionhsd and the Gauss–
Newton step (which is identical with the Newton step in this case, cf Ex-
ample 3.5)hgn (3.18) are approximated by

hssd = −B>f(x) and hsgn = −Df(x) . (3.36)

Algorithm 3.21 is easily modified to use these approximations. The initial
B = B0 can be found by the difference approximation (3.28), andD0 com-
puted asB−1

0 . It is easy to show that then the currentB and D satisfy
BD = I. The step parameterα is found by (3.19) withJ(x) replaced byB.

Like the secant version of the L–M method, this method needs extra updates
to keepB andD as good approximations to the current Jacobian and its
inverse. We have found that the strategy discussed around (3.33) also works
well in this case. It should also be mentioned that the denominator in (3.35b)
may be zero or very small. If

|h>Dy <
√
εM ‖h‖ ,

thenD is not updated, but computed asD = B−1.

Each update with (3.35) “costs”10n2 flops6) and the computation of the
two step vectors by (3.36) plus the computation ofα by (3.19) costs6n2

flops. Thus, each iteration step with the gradient–free version of the Dog
Leg method costs about16n2 flops plus evaluation off(xnew). For compar-
ison, each step with Algorithm 3.21 costs about2

3n
3+6n2 flops plus evalu-

ation of f(xnew) and J(xnew). Thus, for large values ofn the gradient-free
version is cheaper per step. However, the number of iteration steps is often
considerably larger, and if the Jacobian matrix is available, then the gradient
version is normally faster.

6) One “flop” is a simple arithmetic operation between two floating point numbers.



47 3. LEAST SQUARESPROBLEMS

Example 3.16. We have used Algorithm 3.21 and the gradient–free Dog Leg
method onRosenbrock’s functionf : IR2 7→IR2, given by

f(x) =

[
10(x2 − x2

1)
1− x1

]
,

cf Example 3.13. The function has one root,x∗ = [ 1, 1 ]>, and with both
methods we used the starting pointx0 = [−1.2, 1 ]> and ε1 = ε2 = 10−12,
kmax = 100 in the stopping criteria (3.15), andδ= 10−7 in (3.28). Algo-
rithm 3.21 stopped at the solution after 17 iteration steps, ie after 18 evaluations
of f and its Jacobian. The secant version also stopped at the solution; this needed
28 iteration steps and a total of 49 evaluations off .

3.7. Final Remarks
We have discussed a number of algorithms for solving nonlinear least
squares problems. All of them appear in any good program library, and
implementations can be found via GAMS (Guide to Available Mathemati-
cal Software) at the Internet address

http://gams.nist.gov

The examples in this booklet were computed in MATLAB . The programs
are available in the toolboximmoptibox, which can be obtained from

http://www.imm.dtu.dk/∼hbn/immoptibox

Finally, it should be mentioned that sometimes a reformulation of the prob-
lem can make it easier to solve. We shall illustrate this claim by examples,
involving ideas that may be applicable also toyour problem.

Example 3.17. In Powell’s problem from Examples 3.2, 3.8 and 3.10 the variable
x2 occurs only asx2

2. We can introduce new variablesz = [x1, x
2
2 ]>, and the

problem takes the form: Findz∗ ∈ IR2 such thatf(z∗) = 0, where

f(z) =

[
z1

10z1
z1+0.1

+ 2z2

]
with J(z) =

[
1 0

(z1+0.1)−2 2

]
.

This Jacobian is nonsingular for allz. The L–M algorithm 3.16 with starting
point z0 = [ 3, 1 ]>, τ = 10−16 andε1 = ε2 = 10−15 in the stopping criteria
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(3.15) stops after 3 steps withz ' [ -1.40e-25 , 9.77e-25 ]>. This is a good
approximation toz∗= 0.

Example 3.18. The data fitting problem from Examples 1.1, 3.7 and 3.11 can be
reformulated to have only two parameters,x1 andx2: We can write the model
in the form

M(x, t) = c1e
x1t + c2e

x2t ,

where, for givenx, the vectorc = c(x)∈ IR2 is found as the least squares solu-
tion to the linear problem

E c ' y ,

with E = E(x)∈ IRm×2 given by the rows(E)i,: = [ex1ti ex2ti ]. As in Ex-
ample 1.1 the functionf is defined byfi(x) = yi −M(x, ti), leading to

f(x) = y −E(x)c(x) .

It can be shown that the Jacobian is

J = −EG−H[c] ,

where, for any vectoru we define the diagonal matrix[u] = diag(u), and

H = [t]E, G = (E>E)−1
(

[H>f ]−H>E[c]
)
.

Algorithm 3.16 with the same poor starting guess as in Example 3.7,x0 =
[−1, −2 ]>, τ = 10−3 andε1 = ε2 = 10−8 finds the solutionx ' [−4, −5 ]>

after 13 iteration steps; about1
5

of the number of steps needed with the 4-
parameter model.

This approach can be generalized to any model, where some of the parameters
occur linearly. It has the nameseparable least squares, and is discussed eg in
Nielsen (2000) and Golub and Pereyra (2003).

Example 3.19. The final example illustrates a frequent difficulty with least squares
problems: Normally the algorithms work best when the problem is scaled so that
all the (nonzero)|x∗j | are of the same order of magnitude.

Consider the so-calledMeyer’s problem

fi(x) = yi − x1 exp

(
x2

ti + x3

)
, i= 1, . . . , 16 ,
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with ti = 45+5i and

i yi i yi i yi
1 34780 7 11540 12 5147
2 28610 8 9744 13 4427
3 23650 9 8261 14 3820
4 19630 10 7030 15 3307
5 16370 11 6005 16 2872
6 13720

The minimizer isx∗ '
[

5.61·10−3 6.18·103 3.45·102
]>

with
F (x∗) ' 43.97.

An alternative formulation is

φi(x) = 10−3yi − z1 exp

(
10z2

ui + z3
− 13

)
, i= 1, . . . , 16 ,

with ui = 0.45+0.05i. The reformulation corresponds to
z =

[
10−3e13x1 10−3x2 10−2x3

]>
, and the minimizer is

z∗ '
[

2.48 6.18 3.45
]>

with Φ(x∗) ' 4.397·10−5.

If we use Algorithm 3.16 withτ = 1, ε1 = 10−6, ε2 = 10−10 and the equivalent
starting vectors

x0 =
[

2·10−2 4·103 2.5·102
]>
, z0 =

[
8.85 4 2.5

]>
,

then the iteration is stopped by (3.15b) after 175 iteration steps with the first
formulation, and by (3.15a) after 88 steps with the well-scaled reformulation.

APPENDIX

A. Symmetric, Positive Definite Matrices

The matrixA∈ IRn×n is symmetric ifA = A>, ie if aij = aji for all i, j.

Definition A.1. The symmetric matrixA∈ IRn×n is

positive definite if x>A x > 0 for all x∈ IRn, x6=0 ,

positive semidefinite if x>A x ≥ 0 for all x∈ IRn, x6=0 .

Some useful properties of such matrices are listed in Theorem A.2 below. The proof
can be found by combining theorems in almost any textbooks on linear algebra and
on numerical linear algebra. At the end of this appendix we give some practical
implications of the theorem.

Now, letJ∈ IRm×n be given, and let

A = J>J .

ThenA> = J>(J>)> = A, ie A is symmetric. Further, for any nonzerox∈ IRn let
y = Jx. Then

x>Ax = x>J>J x = y>y ≥ 0 ,

showing thatA is positive semidefinite. Ifm≥n and the columns inJ are linearly
independent, thenx 6= 0 ⇒ y 6= 0 andy>y> 0. Thus, in this caseA is positive
definite.

From (A.3) below follows immediately that

(A + µI)vj = (λj + µ)vj , j= 1, . . . , n

for anyµ∈ IR. Combining this with2◦ in Theorem A.2 we see that ifA is symmetric
and positive semidefinite andµ> 0, then the matrixA+µI is also symmetric and it
is guaranteed to be positive definite.
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Theorem A.2. Let A∈ IRn×n be symmetric and letA = LU, where
L is a unit lower triangular matrix andU is an upper triangular matrix.
Further, let{(λj ,vj)}nj=1 denote the eigensolutions ofA, ie

Avj = λjvj , j= 1, . . . , n . (A.3)

Then

1◦ The eigenvalues are real,λj ∈ IR, and the eigenvectors{vj} form
an orthonormal basis of IRn.

2◦ The following statements are equivalent
a) A is positive definite (positive semidefinite)

b) All λj > 0 ( λj ≥ 0 )

c) All uii> 0 ( uii≥ 0 ) .

If A is positive definite, then

3◦ The LU-factorization is numerically stable.

4◦ U = DL> with D = diag(uii).

5◦ A = C>C, theCholesky factorization.C∈ IRn×n is upper trian-
gular.

Thecondition numberof a symmetric matrixA is

κ2(A) = max{|λj |}/min{|λj |} .
If A is positive (semi)definite andµ> 0, then

κ2(A+µI) =
max{λj}+ µ

min{λj}+ µ
≤ max{λj}+ µ

µ
,

and this is a decreasing function ofµ.

Finally, some remarks on Theorem A.2 and practical details: Aunit lower trian-
gular matrix L is characterized bỳii = 1 and`ij = 0 for j>i. Note, that the
LU-factorizationA = LU is madewithout pivoting. Also note that points4◦–5◦

give the following relation between the LU- and the Cholesky-factorization
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A = L U = L D L> = C>C ,

showing that

C = D1/2L> , with D1/2 = diag(
√
uii) .

The Cholesky factorization can be computed directly (ie without the intermediate
resultsL andU) by the following algorithm, that includes a test for positive defi-
niteness.

Algorithm A.4. Cholesky Factorization

begin
k := 0; posdef:= true {Initialisation}
while posdefand k < n
k := k+1; d := akk −

∑k−1
i=1 c

2
ik

if d > 0 {test for pos. def.}
ckk :=

√
d {diagonal element}

for j := k+1, . . . , n

ckj :=
(
akj −

∑k−1
i=1 cijcik

)
/ckk {superdiagonal elements}

else
posdef:= false

end

The “cost” of this algorithm is about1
3
n3 flops. OnceC is computed, the system

Ax = b can be solved by forward and back substitution in

C>z = b and C x = z ,

respectively. Each of these steps costs aboutn2 flops.

B. Minimum Norm Least Squares Solution

Consider the least squares problem: GivenA∈ IRm×n withm≥n andb∈ IRm, find
h∈ IRn such that

‖b−A h‖
is minimized. To analyze this, we shall use thesingular value decomposition(SVD)
of A,

A = U Σ V> , (B.1)

where the matricesU∈ IRm×m andV∈ IRn×n are orthogonal, and
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Σ =


σ1

. . .
σn

0

 with σ1≥ · · · ≥σp > 0, σp+1 = · · · =σn = 0 .

The σj are thesingular values. The numberp is the rank of A, equal to the di-
mension of the subspaceR(A)⊆IRm (the so-calledrangeof A) that contains every
possible linear combination of the columns ofA.

Let {uj}mj=1 and{vj}nj=1 denote the columns inU andV, respectively. Since the
matrices are orthogonal, the vectors form two orthonormal sets, ie

u>i uj = v>i vj =

{
1 , i = j ,
0 , otherwise.

(B.2)

From (B.1) and (B.2) it follows that

A =

p∑
j=1

σjujvj and A vk = σkuk, k = 1, . . . , n . (B.3)

The{uj} and{vj} can be used as orthonormal bases in IRm and IRn, respectively,
so we can write

b =
m∑
j=1

βjuj , h =
n∑
i=1

ηivi , (B.4)

and by use of (B.3) we see that

r = b−A h =

p∑
j=1

(βj − σjηj)uj +

m∑
j=p+1

βjuj ,

and by means of (B.2) this implies

‖r‖2 = r>r =

p∑
j=1

(βj − σjηj)2 +
m∑

j=p+1

β2
j . (B.5)

This is minimized when

βj − σjηj = 0 , j = 1, . . . , p .
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Thus, the least squares solution can be expressed as

h∗ =

p∑
j=1

βj
σj

vj +
n∑

j=p+1

ηjvj .

Whenp<n the least squares solution hasn−p degrees of freedom:ηp+1, . . . , ηn
are arbitrary. Similar to the discussion around (B.5) we see that‖h∗‖ is minimized
whenηp+1 = · · · = ηn = 0. The solution corresponding to this choice of the free
parameters is the so-calledminimum norm solution,

h∗min =

p∑
j=1

βj
σj

vj =

p∑
j=1

u>j b

σj
vj .

The reformulation follows from (B.4) and (B.2).
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